
  

  

Abstract — Muscle synergies are considered as a potential 

strategy to reduce the computational workload undergoing the 

estimation of muscle activity during different motor tasks. They 

are usually extracted by means of algebraic factorization 

algorithms able to capture the greatest communality of a set of 

electromyographic (EMG) signals. Usually EMG signals are 

pooled across different sub-movements (e.g., going forward and 

backward during reaching) in order to increase the complexity 

of the data set and, consequently, capture the maximum 

communality. Despite of these, this preliminary study was 

designed to investigate how the communality of EMG signals 

can be explained looking at narrow subset of recorded signals. 

Results corroborate the hypothesis that using a suitable subset 

of the whole dataset can significantly modify the values of 

weight coefficients. In this regard, further methodological 

investigations of algorithms adopted for synergy extraction are 

still required. 

I. INTRODUCTION 

One of the fundamental challenges of the Neuroscience is 
to understand how the Central Nervous System (CNS) 
organizes motor actions and movements. The brain is 
supposed to control complex movements through the 
adaptable combination of motor modules, often called muscle 
synergies, representing elements of the sensorimotor map that 
transform desired limb trajectories in motor instructions [1]. 
Commonly, muscle synergies are suggested as a strategy to 
manage the huge amount of degrees of freedom problem 
faced in motor control according to two concomitant 
hypothesis: i. instead of controlling many thousands of motor 
units or dozens of muscles, using muscle synergies, the CNS 
can achieve a motor task by controlling a much smaller 
number of variables [2-5]; ii. instead of calculating (i.e., high 
computational cost) the suitable muscle activity of a certain 
motor task, it results as the combination of some modules 
coming up from a sort of “lookup table” (i.e., low 
computational cost) [6, 7]. Evidence for the existence of 
muscle synergies has been provided by the experiments of 
several scientists [5, 8]. However, a number of unresolved 
issues pertaining to those studies still remain. 

Previous authors provided a direct support for the 
hypothesis that the CNS organizes the motor output of the 
upper and lower limbs by the flexible combination of muscle 
synergies [6, 9]. On the whole, they are usually extracted by 
means of algebraic factorization algorithms able to capture 
the communality of a set of electromyographic (EMG) 
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signals [10, 11], in order to highlight the modularity of the 
control of limb movements in several animal species and in 
several motor tasks [3, 12-16]. 

A common approach adopted in literature to extract 
muscle synergies consists in pooling EMG signals of 
different sub-movements (e.g., going forward and backward 
during reaching) in order to increase the complexity of the 
data set and, consequently, capture the greatest communality 
underlying a wide set of movements [12]. One of the 
potential limits of this approach is that, although similar 
motor tasks carried out by different individuals can involve a 
different relationship between the activities of several muscle 
groups, the factorization algorithms may not be able to 
capture the significant difference between them. For instance, 
it is well known that post-stroke patients use to carry out 
reaching movements by using a significant co-activation of 
flexor and extensor muscles with respect to healthy people 
[17]. The movement hence results jerky, lacks of precision, 
and is energy consuming. Nonetheless, the analysis of muscle 
synergy in post stroke patients does not seem to reveal 
discrepancies either between healthy and post-stroke patients, 
or with respect to the severity of the lesion [18]. 

We hypothesized that this surprising result may instead 
highlight that the adopted approaches cannot be able to 
completely capture the relationship between muscle groups. 
For instance, it is reasonable to believe that healthy people 
may achieve reaching movements by combining agonist and 
antagonist muscle groups in an anti-phase strategy, that is, the 
antagonist mainly brakes the end-effector when the 
movement is being terminated. Differently, due to the trauma, 
post-stroke patients cannot finely control the relationship 
between agonist and antagonist muscle groups such that the 
activity of these muscles is likely coupled along the whole 
movement. Consequently, according to the methodological 
issues described by previous authors [19], one would expect 
that the weight coefficients should have a different value 
and/or sign in order to reflect the different relationship 
between agonist and antagonist muscle groups in both groups 
of subjects. 

In order to retain or reject this hypothesis, we designed a 
preliminary study aimed at verifying whether the 
communality of EMG signals can be widely explicated 
looking at a limited portion of the signal. In particular, we 
analyzed the similarity between muscle synergies extracted 
from both: 

• the whole EMG data set corresponding to a complex 
motor task involving 16 planar reaching sub-
movements; 

• many subsets of the whole data set extracted by 
suitable moving time windows. 
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II. MATERIALS AND METHODS 

A. Participant, procedures and technical apparatus 

A neurologically intact young subject (male, age 27 years, 
right dominant arm) was involved in the present study. He 
did not show any evidence or known history of postural, 
skeletal or neurological diseases, and exhibited normal joint 
range of motion and muscle strength. The subject signed an 
informed consent before starting experimental sessions. 

The subject was asked to move the upper arm while 
controlling the position of the end-effector of a robotic 
platform, the InMotion2 (Interactive Motion Technologies, 
Inc. Cambridge, Massachusetts), designed to enable subjects 
to accomplish planar reaching tasks. The robot can also 
move, guide, or perturb the movement of the upper limb of 
the subjects, and can record end-effector kinematics and 
applied force. 

The subject was instructed to make a set of point-to-point 
(back and forth) movements of the handle from a central 
target to eight equidistant ones placed around a 
circumference with radius of 0.14 m. In order to allow 
comfortable positioning, before starting, participant was 
asked to check whether he was able to move his arm through 
its own full range of movement. 

Exercises were carried out by the dominant limb in the 
horizontal plane, by combining elbow and shoulder 
movements. The exercises consisted of five experimental 
sessions, at different cadences, composed of a 10 minutes 
long warm-up period and 5 full turns. Trials were carried out 
without using robotic assistance or resistance but constrained 
by the beat of a metronome at the following frequencies: 30, 
40, 60, 80 and 120 beats per minute (bpm). 

B. EMG recording 

EMG signals were recorded from ten upper arm and 
shoulder muscles (Biceps, BIC; brachialis, BRAC; 
brachioradialis, BRAD; anterior deltoid, DELA; medial 
deltoid, DELM; posterior deltoid, DELP; latissimus dorsi, 
LAT; pectoralis major, PECM; upper trapezius, TRAP; and 
triceps, TRI) by using dual Ag–AgCl snap electrodes with an 
inter-electrode spacing of 2 cm. A standard procedure, in 
accordance with surface electromyography for non-invasive 
assessment of muscles (SENIAM) guidelines, was used for 
skin preparation and electrode placement [20]. The reference 
electrode was placed over the electrically neutral lateral 
epicondyle where it interfered least with the movement and 
other electrode sites. EMG electrodes were connected to a 
hub and wirelessly transmitted to the Noraxon data 
acquisition system (NORAXON, Telemyo 2400T, V2), to 
enable unimpeded movements. Sample rate was set at 1500 
Hz. 

C. EMG pre-processing 

Raw EMG signals were pass band filtered (Butterworth 
filter, 4th order) with lower and upper pass band cutoff 
frequencies at 6 and 500 Hz to remove artifacts. The signals 
were then rectified and normalized to those recorded during 
MVC and, finally, low pass filtered with cutoff at 3Hz 
(Butterworth filter, 4th order). The polished EMG data 

referring to second-fifth repetitions were resampled over 
24000 samples and averaged. For this study, only the data 
related to the 60 bpm (confortable cadences) were used. 

D. Muscle synergies extraction 

Muscle synergies were extracted by using the Factor 
Analysis (FA) with “varimax” rotation. As well known, all 
factorization methods consist of decomposing a set of pre- 
processed EMG signals in order to express them as the 
product between primitive signals and weight coefficients. 
Each couple, primitive signals-related weightings, describes 
the weighted contribution of each primitive signal to the 
EMG activity of all recorded muscles. In this paper, with the 
term muscle synergy we explicitly refer to the weight 
coefficients representing muscle enrollment related to each 
synergy. The number of retained synergies was based on the 
eigenvalue>1 criterion. 

Three different procedures to extract muscle synergies 
were adopted. The first method consisted in extracting 
muscle synergies from the whole data set (M1) related to the 
complete task (i.e., pooled 16 forward and backward 
movements). The second method consisted in factorizing data 
for each of the 16 movements (M2). The third method of 
decomposition was based on a discrete time segmentation of 
the whole matrix of EMG signals (M3). Specifically, the 
whole data set was segmented by moving a time window of 
24000/16=1500 samples, step by step. The FA was then 
performed for each of these subsets. 

The degree of similarity between muscle synergies related 
to M1 and M2, and those related to M1 and M3 was 
estimated by calculating the dot product between weight 
coefficient vectors extracted by the different methods. 

Data were processed by using custom routines developed 
under Matlab environment (Mathworks Inc., Natick, MA, 
USA). 

III. RESULTS 

According to the adopted criterion, the extracted 
synergies relating to M1 accounted for about 70% of the 
cumulative variance of data sets. This value ranged between 
70% and 85% with data referring to M2 and M3. 

The FA allowed to group muscle activity related to M1 as 
follow: 

• the first synergy (first column in Figure 1) 
functionally referred to the support of the arm 
achieved by DELM and DELP, and a lower 
contribution of TRI; 

• the second synergy (second column in Figure 1) 
mainly accounted for the activity of DELA and 
DELM, and the lower contribution of BRAD and 
BRAC; 

• the third synergy (third column in Figure 1) reflected 
the activity of LAT, PECM  

Comparing muscle synergies extracted by M1 and M2 
(Figure 2), it is possible to observe the modulation of weight 
coefficients ongoing the whole motor task accounting for 16 
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different sub-movements. In particular, it is possible to 
observe that, although some muscle groups load the same 
synergies, their weight coefficients can reflect either the 
modulation of their activity, or the modification of the phase 
relationship.  

 

Figure 1. Weight coefficients referring to the three (columns) extracted 

synergies related to EMG signal record during whole data set related to the 

complete motor task, (M1). 

 

 

 
 

Figure 2. From first to tenth rows: weight coefficients referring to the three 

(columns) extracted synergies related to EMG signal related to each of the 

16 movements included in time-segmentation (M2). For each direction of 

the movement (see labels on the x axis; N, North; NE, North-East; E, East; 

SE, South-East; S, South, SW, South-West; W, West; NW, North-West) 

weight coefficient refer respectively to forward and backward movements. 

Last row show, for each synergy, the degree of similarity (dot product) 

between muscle synergies to M1 and M2.  

 

For instance, the contribution of deltoids in the M1 
extraction is split in two synergies (Figure 1) and in particular 
the couples DELM – DELP and DELM – DELA, resulted 
always in phase (i.e., weight coefficients are all positive). 
Observing data extracted for each of the 16 sub-movements 
(M2; see Figure 2), it is possible to notice that the weight 
coefficient related to DELA is often (see East, South-East, 
and South-West in syn1, Figure 2) in disagreement with that 
found for M1 data set. 

The absence of agreement between muscle synergies 
related to M1 and M2 data sets is reflected in the degree of 
similarity reported on the bottom of Figure 2. Specifically, 
the second synergy was characterized by the widest trend 
ranging from 1 (i.e., maximum value of similarity, same 
phase) to -1 (i.e., maximum value of similarity, anti-phase), 
crossing 0 (i.e., no similarity). 

A similar behavior was also observed when muscle 
synergies related to M1 and M3 data sets were compared (see 
Figure 1 and Figure 3). In particular, the weight coefficient 
related to each muscle oscillated significantly reflecting the 
modulation of both its activity and the phase relationship, 
which affected the degree of similarity between the data sets 
(see subplots on the bottom in Figure 3). 

An interesting result concerned the high similarity 
observed in syn1 and syn3 in both coupled data sets (i.e., M1 
vs. M2 and M1 vs. M3). In particular, although the weight 
coefficients related to all muscle groups ranged from -1 to 1, 
the cosine of the angle between the coupled weighting 
vectors remained almost constant. 

 

Figure 3. From first to tenth rows: weight coefficients referring to the three 

(columns) extracted synergies related to EMG signal record during whole 

data set, the area represent the trend weight value for each of the segmented 

movements (M3). Last row show, for each synergy the degree of similarity 

(dot product) between muscle synergies extracted with M1 and M3. X-axis 

labels are the same of figure 2. 
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IV. DISCUSSION 

The aim of this study was to investigate the effect of the 
time segmentation on the extraction of muscle synergies in 
order to highlight whether the principal rules underlying 
muscle activity change along the whole movements. 

Our results confirm that weight coefficients can be 
significantly modified by the observed time window, 
highlighting that it possible to achieve different results 
adopting different approaches. Indeed, this likely obvious 
observation shows that, on one hand, the analysis of muscle 
synergies needs a significant methodological effort to 
harmonize results across different authors, studies, and trials. 
On the other hand, it shows that the fundamental model 
underlying muscle activity, represented by the weight 
coefficient, may can change with the direction of the 
movement. 

Actually, d’Avella and colleagues [21] already observed 
that the coefficient of a small number of their time-variant 
muscle synergies reflected the organization of the muscle 
patterns observed during movements in different directions. 
Our results support this evidence, highlighting that the factor 
“direction of the movement” can involve a specific 
relationship among different muscle groups, which may not 
come up when data are pooled across many records. 

Reported results also showed that, although weight 
coefficient significantly change through the ongoing exercise 
(see Figures 2 and 3), the degree of similarity between 
synergies related to M1 and those related to M2 or M3 can 
reach high values. We believe that two main reasons led this 
result. On one hand, the “dot product” takes into account for 
the load of all muscles, such that weighting coefficient 
vectors of two coupled datasets can really result almost 
aligned (i.e., the angle between them is small). On the other 
hand, we also have to acknowledge that the “dot product” is a 
non-linear function, which tends to overestimate the degree 
of similarity between two vectors diverging in a wide range 
of values (e.g., from 0 to 30 degrees). Therefore, we believe 
it is important to define a suitable threshold to characterize 
the relationship between two weight coefficients. 

Actually, further deep investigations concerning many 
aspects may be needed in order to generalize these 
preliminary results and discuss inter-subject variability with 
respect to synergies identification. However, the showed 
results confirm that although muscle synergies are a valuable 
tool to investigate the principal roles adopted by the CNS to 
control the activity of many muscle groups, we must pay 
attention while using it in order to avoid unexpected artifacts. 
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