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Abstract— The EMG signal is a well-known and useful 
biomedical signal. Much information related to muscles and 
human motions is included in EMG signals. Many approaches 
have proposed various methods that tried to recognize human 
motion via EMG signals. However, one of the critical problems 
of motion pattern recognition is that the performance of  
recognition is easily affected by the normalization procedure 
and may not work well on different days. In this paper, a 
modified feature of the multi-channel EMG signal is proposed 
and the normalization procedure is also simplified by using this 
modified feature. To recognize motion pattern, we applied the 
support vector machine (SVM) to build the motion pattern 
recognition model. In training and validation procedures, we 
used the 2-DoF exoskeleton robot arm system to do the designed 
pose, and the multi-channel EMG signals were obtained while 
the user resisted the robot. Experiment results indicate that the 
performance of applying the proposed feature (94.9%) is better 
than that of conventional features. Moreover, the performances 
of the recognition model, which applies the modified feature to 
recognize the motions on different days, are more stable than 
other conventional features. 

I. INTRODUCTION 

The EMG signal is the electrical potential generated by 
muscle cells when these cells are mechanically active. It has 
been applied to many areas, such as medical research, 
rehabilitation, ergonomics and sports science. It has also been 
used by engineers to control robots. A wearable exoskeleton 
robot system is more useful to assist humans, especially for the 
disabled. Generally, there are two studies for control robots 
based on using EMG signals. One of the two studies focuses 
on building a muscle-skeleton model via EMG signals to 
control robots. The other study on controlling robots focuses 
on applying the machine-learning method to recognize the 
motion.  

There have been many approaches to build a 
muscle-skeleton model. Rosen et al. [1] presented a method to 
control a powered exoskeleton. They used the Hill-based 
muscle skeleton model and the EMG signals to model the 
human arm status. Fleischer et al. [2] proposed the dynamic 
human body model (DHBM) and the direct force control 
(DFC) to achieve exoskeleton control. By using the muscle 
model, the force produced by the muscle can also be 
approximated. However, the muscle internal information such 
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as muscle fiber length has to be given before building the 
muscle model. For this reason, the other way of applying 
machine-learning methods was proposed. In this method, 
determining how to extract features from EMG signals and a 
suitable machine learning method are the important issues. 
Over the past decades, a lot of research focused on feature 
extraction and machine learning methods. In 1993, Hudgins et 
al. [3] proposed five kinds of time-domain (TD) features, and 
applied artificial neural networks to recognize upper limb 
motions. The TD features are mean absolute value (MAV), 
mean absolute value slope, zero crossing (ZC), slope sign 
changes (SSC) and waveform length (WL). Fukuda et al. used 
the EMG signals to teleoperate a human-assisting manipulator. 
They estimated the mean absolute value of the EMG signals 
and applied a novel statistical neural network for EMG pattern 
discrimination. The network was trained to recognize the 
human arm posture by the EMG pattern and the 3-D position 
sensor [4]. In 2004, Fukuda et al. [5] proposed a control 
method to control a wearable robot arm. The neuro-fuzzy 
network was employed.  

Frequency-domain features as well as TD features have 
been applied. Englehart et al. [6] showed the result of motion 
recognition by using frequency-domain (FD) features. The 
common FD features are the coefficients of short-time Fourier 
transform (STFT), the coefficients of wavelet transform (WT), 
and the coefficients of auto-regression (AR) of the spectrum of 
EMG signals. The auto-regression feature was applied to the 
application of muscle fatigue in 1987. Since then, many 
research groups have been trying to use this feature in motion 
recognition. When many kinds of feature extraction methods 
were proposed, the various combining methods were also 
employed. Englehart et al. [7] tried to use TD and FD features 
to recognize the wrist and palm motions. In this approach, FD 
features including STFT and WT were combined with the 
conventional TD features to build the recognition model. In 
2005, Chan et al. [8] used the AR features and the Gaussian 
mixture model (GMM) to extract the FD feature of EMG and 
classify the forearm motion. With the same machine learning 
method, Huang et al. [9] also applied the GMM method to 
recognize the motion for controlling the upper-limb prostheses. 
They compared with the performances of three kinds of 
combining features, which used TD, AR + RMS, AR + RMS + 
TD. Moreover, Oskoei et al. [10] made similar comparisons. 
They applied SVM, which is widely used in the machine 
learning method, and tried various combined features. These 
methods included only TD, FD features, and the combination 
of TD and FD features. 

 Although numerous studies have proposed many kinds of 
features and recognition methods, recognizing motions 
generated at different times or days was not discussed. For this 
reason, some experiments pertaining to motion pattern 
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recognition on different days in this paper have been designed 
to compare the performances. The modified feature is also 
proposed to simplify the normalization procedure and to 
provide better performance than conventional features in our 
experiments. The rest of this paper is organized as follows. 
Section II introduces the exoskeleton robot arm system and 
data acquisition system, which was used to help the user 
produce the designed actions. Section III presents the entire 
motion pattern recognition procedure, including muscle onset 
time detection, with the modified feature. Then, the design of 
our experiment results will be shown and discussed. Finally, 
section V summarizes the conclusions. 

II. DATA COLLECTION AND ROBOT SYSTEM 

For the motion pattern recognition based on multi-channel 
EMG signals, six-channel EMG signals were collected. In this 
paper, the motions of shoulder and elbow joints in the saggital 
plane were defined as the shoulder flexion/extension and 
elbow flexion/extension. For the elbow flexion/extension, the 
biceps brachii and triceps brachii were selected. For the 
shoulder motions, anterior deltoid, posterior deltoid, pectroalis 
major and teres major were applied. To measure the EMG 
signals, surface EMG electrodes (Ag/AgCl) were employed. 
To avoid the factor resulting from the different distances 
between the electrodes, the pair of electrodes was placed close 
to keep the distance fixed. The fixed distance was about 
double the radius of a single electrode since the electrodes 
were closed. These six-channel EMG signals were sampled at 
1 kHz using a 12-bit data acquisition card made by National 
Instruments. 

To obtain the multi-channel EMG signals of the designed 
pose, an exoskeleton robot arm system was used to help the 
user to generate the EMG signals. In this robot system, there 
are two degrees of freedom that correspond to the shoulder 
and elbow joints of the human body. In the training procedure, 
a set of poses was designed and used to control the robot arm. 
While the robot was executing the poses, the user was required 
to resist the robot arm. While the user was resisting, the 
recorded multi-channel EMG signals represented the pose 
opposite the robot motion. For example, the multi-channel 
EMG signals were generated by elbow extension when the 
robot arm was lifting up. Then, the set of multi-channel EMG 
signals was labeled as elbow extension in the training 
procedure and in the validation procedure. Additional details 
of the training and validation procedure are discussed in the 
experiments. 

 
Figure 1.  Flow chart of motion pattern recognition 

III. THE METHOD OF UPPER LIMB MOTION CLASSIFICATION 

 The entire processing of upper limb motion classification is 
presented in Fig. 1. When the multi-channel EMG signals are 
obtained, the front-end signal processing, including 
segmentation and onset time detection, will be executed. Then 
the features are extracted for building the motion classification 
model or recognizing the motion. 

A.  Muscle Onset Detection Method 
 In the front-end signal processing, segmentation is the first 
step. For the EMG signals in each channel, they are segmented 
per 256 samples, and the features will be extracted and used to 
recognize the motion of this segment. In addition to feature 
extraction and motion pattern recognition, muscle onset time 
detection is the other critical component to determine whether 
the muscle is active in this segment. In the conventional 
method, the standard deviation of the baseline part is 
estimated in the raw EMG signal or the RMS of the EMG. 
Then several times the standard deviation is set as the 
threshold to define the muscle activity. In this paper, the other 
onset time detection method is applied. The Teager-Kaiser 
energy (TKE) operator [11] is widely used in speech and 
communication approaches such as AM and FM modulation. 
Recently, the TKE operator was employed to detect the EMG 
onset time. The equation of the TKE operator is denoted as (1). 
The signal 	x(n)  is assumed as a cosine signal where ܣ	 , 
ω(n)	and θ	are amplitude, angular frequency and phase in (2). 
When x(n)  is processed by the TKE operator, the 
approximated result is derived in (3).  

         112 n-xn-xnxnxΨ   (1) 

     θnw A nx  cos  (2) 

      nw A nxΨ 22 sin  (3) 

Equation (3) shows the advantage of the TKE operator, 
namely that the frequency and amplitude of 	x(n)	 are 
enhanced without mapping to the frequency-domain; this is 
the main reason that we apply this operator. The EMG signals 
in each channel are calculated by (1) and three times the 
standard deviation value of baseline signals is set as the 
threshold to determine whether the muscle is active in that 
segment. 

B. The Features of EMG Signals 
When the active segment is detected, the features of this 

segment are extracted. The features include TD and FD types. 
In this paper, the performances of different methods that 
combine TD and FD features are compared. The conventional 
TD features are MAV, ZC, SSC, WL [3] and RMS [8]. The 
threshold used to detect the onset time is applied to be TH in 
the equations of ZC and SSC. The TH is used to avoid the 
baseline noise being counted. Frequency-domain features are 
the other types of features; they are the coefficients of STFT, 
the coefficients of AR, median frequency of power spectrum 
(MPF) and mean power frequency (MF) [12]. In the 
frequency-domain, the 1st to 250th coefficients of STFT are 
used to be the features. The sixth order of AR is usually 
applied, as in this paper.  
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Figure 2.  Main concept of the Rank feature 

In some papers, the use of combined TD and FD features 
in a feature vector is usually employed. However, the 
normalization procedure has to be executed since the 
magnitudes of the features or signals are different in different 
experiments no matter whether the user or the motion is the 
same. Nevertheless, the relationship between muscles in the 
same user and motion is similar. For this reason, the novel 
feature is proposed herein. The feature, the modification of the 
coefficients of STFT, is called Rank of STFT. The main 
concept of the Rank of STFT method is depicted as Fig. 2. For 
the goal of the motion pattern recognition, the six kinds of 
muscles are applied. Therefore, the coefficients of STFT in 
each muscle are ranked from 1 to 6. To calculate the Rank of 
STFT, the 1st to 250th coefficients of STFT in each muscle are 
separated into several bins. The bin is denoted as (4). The 
Binb,m means the bth bin of the mth muscle. The parameter N 
represents the number of frequency elements in each bin.  

 Binb, m= 1
N
∑ m݂(N·b+k)N

k=1 ,	b=0,1,2,…, 250
N

-1  (4) 

The dimensions of the Rank of STFT are able to be reduced 
after using the bin method. For example, the dimensions of 
ranking 25 bins in six-channel EMG signals are 150. Through 
the ranking process, the feature is meaningful and represents 
the relationship between muscles; it does not just combine the 
features into a vector.  

Moreover, the normalization procedure is also simplified 
based on the ranking method. In the typical motion pattern 
recognition, the maximum and minimum value of each feature 
should be estimated to normalize features. In contrast with the 
typical method, the maximum and minimum values, which are 
the number of applied muscles and 1, have been known since 
the rank processing. Given this advantage, the normalization 
procedure can be simplified, and make the performance of 
motion pattern recognition is better than using conventional 
features in different experiments. 

C. Classification Method 
The SVM method is a commonly used machine-learning 

method. There are several kernel functions in SVM, such as: 
linear, RBF (radial basis function), polynomial and sigmoid 
functions. The data are mapped to high dimensional space 
through the use of the kernel functions. Then the mapped data 
are expected to be easily separated in the high dimensional 
space by using the hyper plane. The best hyper plane is 
defined by maximizing the margin between the boundaries. 
The boundaries are made by the data in each class. In our 
experiments, the RBF is applied to build recognition models. 
The performances based on using conventional methods and 
the proposed features are compared in the same kernel 
function. 

IV. EXPERIMENTS 

 To verify the proposed method, the multi-channel EMG 
signals were obtained from a thirty-year-old healthy male 
subject. There are seven trials in our experiments. Each trial, 
including training and validation procedures, was executed 
every two days in two weeks, in order to avoid muscle fatigue. 
The motion scenario was designed for the training procedure. 
When the robot arm was moving to achieve the poses of the 
scenario, the subject was required to resist the robot arm. 
Therefore, the generated EMG signals of the motions opposite 
to the robot arm would be measured and labeled. The rotation 
angles of the shoulder and elbow are zero when the forearm 
and upper arm are perpendicular to the ground. The rotation 
angle is positive when the movement of shoulder or elbow is 
flexion. According to the coordination definition, the motion 
scenario is described in Table I. There are six motions in the 
scenario, and the user is able to rest for 10 sec between each 
motion. In contrast with the training procedure, the robot arm 
is static in the validation procedure when the user resisted the 
arm. The poses for validation are shown in Fig. 3. In Fig. 3 (b) 
and (c), the angles of the elbow are 45°and 15° , respectively. 

 In this paper, the performances of seven combined features 
are compared. The seven features are TD (MAV + ZC + SSC 
+ WL), AR + RMS, AR + RMS + TD, MAV, AR + STFT + 
MPF + MF, STFT, and the proposed feature (Rank of STFT). 
Those seven features are denoted as  f_1 to f_7 in the following 
comparisons. As already mentioned, there are seven trials in 
two weeks. Each trial includes training and the validation 
procedure. The features of the multi-channel EMG signals 
were normalized by the maximum and minimum of the 
features from the data in the training procedures of each trial. 
Because the values are known previously, using the Rank of 
STFT does not require calculating the maximum and 
minimum values. This is why the proposed feature is able to 
simplify the normalization procedure. 

TABLE I.  THE DESIGNED POSES FOR TRAINING PROCEDURE 

Motion Shoulder Elbow 

#1 Lifting up from 0° ~ 90°  Fixed 

#2 Fixed Lifting up from  0° ~ 90° 

#3 Fixed Lying down from  90° ~ 0° 

#4 Lying down from  90° ~ 0° Fixed 

#5 Fixed Lifting up from  0° ~ 90° 

#6 Fixed Lying down from  90° ~ 0° 
 

               
(a)                      (b)                                 (c)                       (d) 

Figure 3.  The poses for validation procedure.                                                          
(a) Shoulder lifting up/lying down (b) Elbow lifting up/lying down                   

(c) Elbow lifting up (d) Shoulder lifting up/lying down 
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Figure 4.  Comparison of the average performances achieved using different 

features in seven trials 

 
Figure 5.  Comparison of the average performances of using different 

features to validate current and different trials 

In our experiments, the performances of four separation 
methods, 25, 50, 125 and 250 bins, are compared. Fig. 4 
illustrates that using 50 bins (94.9%) produces a better result 
than using any other number. Moreover, the result also 
indicates that using four muscles (biceps, triceps, anterior 
deltoid and posterior deltoid) is better than using six muscles. 
The comparison shows the pectroalis major and teres major 
may not provide the key contributions for generating the 
designed poses. The advantage of using four muscles is that 
the dimensions of the feature vector will be reduced. In Fig. 5, 
the black bars show the average performances achieved using 
the seven features to validate the poses in seven trials. In 
cross-trial validation, one of seven models trained by the 
training data of the current trail is used to validate the 
validation data of the rest six trails. Obviously, using Rank of 
STFT (94.9%) is better than using other features. The 
comparison with the standard deviations also indicates the 
performance of using Rank of STFT is more stable than using 
conventional features. The gray bars in this figure show the 
other important results. In the approaches of motion pattern 
recognition based on EMG signals, the performance based on 
using the recognition model will become worse when 
validating the motions on different days or at different times. 
The factors making the performance worse are various such as 
skin impedance, the position of EMG surface electrodes, and 
so on. In this paper, our assumption is that the normalization 
procedure might be one of the interference factors. The 
maximum and minimum values of EMG signals and features 

might be different on different days. However, the behaviors 
of the EMG signals in the same motion should be similar. 
Using Rank of STFT facilitates maintaining the behavior 
between muscles. The gray bars in Fig. 5 show the average 
accuracy produced by using one of the seven models to 
validate the motions of the other six trials. The result shows 
the performance of Rank of STFT (f_7, 87.7%) is better and 
more stable than the performances using other features. 

V. CONCLUSIONS 
A novel feature, Rank of STFT, is proposed by modifying 

the conventional features. The experimental results show that 
the accuracy of using the Rank of STFT is 94.9% which is 
better and more stable than that achieved using traditional 
features. Moreover, the normalization procedure is simplified 
since the maximum and minimum values were previously 
known. To validate the motions on different days or at 
different times, the accuracy of the Rank of STFT is 87.7%, 
which also has better performance than that achieved by using 
the other features.  

The use of the Rank of STFT feature not only facilitates 
maintaining the behavior of muscles but also achieves a better 
performance. In the future, the comparison of applying this 
approach with different subjects will be studied, and the 
method will be used in controlling exoskeleton robot arms. 
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