
  

 

Abstract — As the development of dexterous prosthetic hand 

and wrist units continues, there is a need for command 

interfaces that will enable a user to operate these multi-joint 

devices in a natural, coordinated manner. In previous work, we 

have demonstrated that it is possible to simultaneously decode 

hand and wrist kinematics from myoelectric signals recorded 

from the forearm in an offline manner. The goal of this study 

was to quantify the performance of this command interface 

during real-time control of a kinematic prosthesis. One subject 

with intact limbs controlled a virtual prosthesis and attempted 

to match a series of target postures using the proposed control 

scheme as well as using the movements of the intact limb. Initial 

results indicate that subjects can complete these target 

matching tasks in the virtual environment. Future work will 

evaluate the controllability of the proposed strategy relative to 

traditional control schemes.  

I. INTRODUCTION 

Upper extremity prostheses can be effective tools for 
individuals with amputations. These devices typically have a 
somewhat awkward control interface that limits the user to 
operation of a single joint at a time, leading many amputees 
to choose not to use their prosthesis at all [1]. A number of 
approaches have been developed to map myoelectric signals 
(MES) to the desired movements of a prosthesis in a more 
natural manner. Pattern recognition techniques (e.g. linear 
discriminant analysis and fuzzy logic) have been used to 
identify discrete movement states, allowing a user to 
seamlessly operate the joints of a prosthesis in a sequential 
manner. Alternatively, the continuous prediction of 
movement trajectories with tools such as artificial neural 
networks (ANNs) may facilitate coordinated and 
simultaneous multi-joint control. Previous work by our group 
[2] and others [3,4] has shown ANNs to be capable of 
achieving highly accurate offline estimations of hand and 
wrist joint angle positions. 

While the use of these statistical and artificial 
intelligence techniques in EMG control systems has been 
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well researched, few if any of these algorithms have been 
clinically deployed. Recent clinical evaluations have 
demonstrated the value of using substitutes for a physical 
prosthesis during occupational training [5], leading several 
research groups to use “virtual arms” for quantifying pattern 
recognition based control [6-8]. While several dexterous 
prosthetic limbs are now commercially available, virtual 
environments remain a cost-effective tool for assessing the 
performance of advanced prosthetic control systems. 

The goal of this study was to quantify the performance of 
an artificial neural network-based movement decoder during 
real-time control of a kinematic virtual prosthesis. One 
subject with intact limbs controlled a virtual hand and 
attempted to match a series of target postures using both the 
proposed myoelectric control scheme as his own movements 
and command signals. 

II. METHODS 

MES data and hand kinematics were recorded from one 
male subject with an intact upper limb. The subject had no 
history of neuromuscular disorders. The MetroHealth 
Medical Center IRB approved the experimental procedures 
and the subject provided informed consent prior to 
participating in the study. Eight surface MES electrodes were 
positioned at equidistant locations around the circumference 
of the left forearm centered at approximately 30% of the 
distance from the medial epicondyle of the humerus to the 
styloid process of the ulna. In this study, we specifically 
examined three kinematic degrees of freedom: 
pronosupination, wrist flexion-extension, and finger flexion. 
The contralateral (i.e. left) limb was equipped with a 
CyberGlove II (CyberGlove Systems LLC, San Jose, CA, 
USA) to measure finger flexion and wrist flexion, and a 
torsiometer (Biometrics Ltd, United Kingdom) to measure 
pronosupination. Recording the kinematics in this manner 
(i.e. from the contralateral limb) provides a comparable 
baseline to data collected from amputees, where kinematic 
data must be recorded from the intact limb and MES data 
from the residual limb on the amputated side [3]. Trials were 
collected while the subjects performed a variety of isolated 
and coordinated movements involving the hand, forearm, 
and wrist. During all trials, kinematic and MES data were 
simultaneously recorded. In total, approximately 15 minutes 
of training data were collected. 

The overall approach for data analysis and training the 
artificial neural network are illustrated in Figure 1. The MES 
data was segmented with 128 ms rectangular windows with 
50% overlap between adjacent segments. Time-domain 
features [9] were then extracted from the segmented 
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Figure 1. Screenshots from the virtual environment. The top panel 

shows the display when the controlled limb (right) does not match the 

target limb (left). The bottom panel shows the display when the 

controlled limb matches the target configuration. 

myoelectric data. The kinematic trajectories were normalized 
to a 0 to 1 scale and resampled to match the effective sample 
time of these time domain features.  

For continuous prediction of the hand and wrist 
kinematics, a time delayed artificial neural network 
(TDANN) was trained offline using a backpropagation 
algorithm in MATLAB (Mathworks Inc, Natick, MA, USA) 
to map the relationship between the time domain MES 
features and the three joint angles. A two-layer feed forward 
structure with a nonlinear tangent-sigmoidal activation 
function for the hidden layer and a linear output layer was 
utilized. Three input time delays were used to capture the 
dynamic relationship between the MES features and joint 
angular position. The data was split into training, validation 
and testing data sets. Validation is used during the training to 
monitor the error generated by data not used for training. 
When this error increases, the TDANN is memorizing the 
training data set and the network is losing its ability to 
generalize. The testing data set is used to evaluate the 
performance of the TDANN after the training is finished. 
Offline TDANN performance on this testing data set was 

quantified by calculating the normalized root mean square 
error (NRMSE) and the variance accounted for (VAF) 
between the experimentally recorded joint angle trajectories 
and the corresponding trajectories predicted by the TDANN. 
The details of this approach have been previously presented 
[2]. Once trained, the TDANN was then used to generate a 
real-time controller implemented in Simulink/xPC target 
(Mathworks Inc, Natick, MA, USA). The output of the 

TDANN is mapped proportionally to the joint angular 
position of the prosthesis. Custom code was used to 
automate the data analysis (i.e. segmentation and feature 
extraction), TDANN training, and generation of the real-time 
controller. These steps can be completed in approximately 
10 minutes. 

In the same experimental session after the offline 
analyses were completed, the subject viewed a kinematic 
simulator in which a target posture was displayed next to a 
controlled virtual arm. The subjects’ EMG signals were 
sampled and fed through the TDANN. The estimated joint 
angles were then filtered and displayed via the virtual hand. 
The subjects were instructed to modulate their muscle 
activation patterns to match the configuration of the virtual 
hand with the target hand. A screen capture from the 
simulator is shown in Figure 1. Several indicators (i.e. the 
green dots on the right arm) are used to cue when each 
respective degree of freedom is on/off target. When all 
degrees of freedom are on target, the background of the 
virtual environment lights up as an additional cue. Subjects 
had 15 seconds to match the target posture within a certain 
tolerance and hold it for a dwell time of 1 second. All joints 
had the same angular tolerance – this was initialized to 15 
degrees. 10 blocks of 10 randomized targets were presented 
and the posture matching task difficulty (i.e. the joint angular 
tolerance) was adapted at the end of each block to attempt to 
achieve an overall success rate of 70%. The users’ 
performance was quantified by calculating the path 
efficiency [10] for targets successfully reached and 
monitoring the tolerance levels achieved over the 10 blocks. 
For comparative purposes, this kinematic posture matching 
task was performed with two command interfaces: (1) the 
proposed artificial neural network joint angle decoder and 
(2) the actual movements of the intact limb. 

III. RESULTS 

Figure 2 shows the success rate, path efficiency for 
successfully reached targets, and angular tolerance values 
over the ten blocks when the subject was controlling the 
virtual arm with both the TDANN estimator (i.e. myoelectric 
control) and with the movements of his actual limb (i.e direct 
kinematic control). In each panel, the solid black line 
represents the metric for control with the actual limb 
movements and the solid gray line represents the metric for 
control the movements estimated from MES signals. 

It can be seen that the tolerance for direct kinematic 
control decreases initially since the subject was able to reach 
all 10 targets (maintaining a 100% success rate) for the first 
5 blocks, and then reaches a plateau at 5°. The tolerance for 
myoelectric control, however, increases initially and reaches 
a plateau at 20°. Path efficiency, however, does not exhibit a 
clear difference between myoelectric control and kinematic 
control. 

IV. DISCUSSION 

We have developed a control strategy for a transradial 
prosthetic limb the uses MES signals recorded from the 
forearm musculature to estimate three hand and wrist 
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movements in real-time in a continuous and simultaneous 
manner. A single subject with intact limbs was able to use 
this scheme to control a virtual arm and complete a series of 
kinematic target matching tasks. In order to achieve the 70% 
success rate set in this study, however, the target tolerances 
increased to approximately 20 degrees when using the 
proposed scheme. This level of accuracy is likely to be too 
low for prosthetic control applications. We are currently 
pursuing several strategies for improving the controller’s 
performance. The most significant challenge during the 
kinematic matching task was holding the virtual arm in a 
specified position for the required dwell time of one second. 
We are currently developing a probability-based method for 
adaptively filtering the estimated movements [2]. We are 
also evaluating continuous velocity estimation, rather than 
position estimation. This has the potential advantage of 
decreasing the cognitive effort required to maintain a desired 
position. 

Additionally, it is worth noting that the functional 
implications of this study are yet unclear. While the 
performance comparison between using the proposed control 
strategy and using the actual movements is interesting, a 
more relevant comparison would be to evaluate this scheme 
relative to more traditional approaches, such as two-site, 
two-state control with a mode switch [11], or even other 
advanced approaches utilizing pattern recognition [8]. Future 
evaluations will include these command and control 
interfaces as well. Also, this experiment used an able-bodied 
subject with fully intact muscles, and the subject was not 

actually operating a prosthesis or performing a functional 
task. Both of these factors can be expected to affect 
performance in realistic conditions [7,12]. Future testing will 
evaluate the ability of individuals with amputation to control 
multi-joint myoelectric prosthesis during functional activities 
either simulated in a dynamic virtual environment with 
haptic feedback [13] or performed with a physical device. 
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Figure 2. Block performance of kinematic posture matching task for 

both direct control using actual movements (black) and movements 

estimated from MES signals (gray). Shown are overall success rate (top 

panel), path efficiency (middle panel), and angular tolerance (bottom 

panel). 
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