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Abstract— Described herein is a new and robust method to
extract heart-beat timing from seismocardiogram (SCG). This
timing indicates the precise time location of each heart beat and
therefore directly conveys heart rate information. Knowledge
of the time location of each occurrence of the underlying SCG
waveform allows us to obtain a clean SCG waveform estimate
by time averaging noisy segments of an SCG time series. The
algorithm can be implemented in wearable SCG-based devices
to provide heart monitoring or diagnosis capabilities without
relying on any other methodology, such as electrocardiography,
as a timing reference.

I. INTRODUCTION

Seismocardiography is a technique for measuring and

analyzing the heart’s activity manifested in the form of me-

chanical vibrations. The most commonly used measure is the

vibrational acceleration detected by an accelerometer placed

on the outer chest wall. It has been found [1], [2] that well-

defined events in the cardiac cycle can be identified on the

seismocardiogram (SCG). Furthermore, the SCG waveform

and particularly its morphology contains information about

the heart’s health. A reasonably comprehensive study of the

effectiveness of SCG in detecting coronary artery disease

(CAD) is given in [3]. Also, SCG has been used as a

noninvasive means to study myocardial contractility under

hyperbaric exposure [4]. A variant of SCG called quantitative

ballistocardiogram has been used to study systolic force in

relation to ageing [5].

Although SCG came into existence many decades ago, its

potential benefits have been unexplored commercially, in part

due to lack of simple sensors and signal processing methods

that can reliably extract information. With the advancement

of MEMS-based sensors and low-power microprocessors,

interests have recently increased in small-size and light-

weight systems for capturing and processing of SCG to

provide continuous heart monitoring [6]–[8]. With further

research and development, SCG may find its way into con-

sumer electronics to provide advanced health and life care

capabilities such as noninvasive heart disease detection.

Past studies on SCG, however, were conducted not with

SCG alone but with the assistance of an electrocardiogram

(ECG) as a timing reference [1], [8]–[10]. The work of [8]

in particular uses the ECG timing reference to obtain a clean

SCG waveform, from which the so-called the I-J index can

be extracted that provides an estimate of the cardiac output.
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A common component of many existing approaches to

SCG processing and information extraction is the use of

the ECG as a timing reference. While SCG has potential

benefits over ECG such as better sensitivity and specificity

in detecting CAD [3], a device’s reliance on ECG would

marginalize these benefits because ECG is well understood

and can by itself provide most if not all the information that

the SCG can. From the commercial and user-convenience

viewpoint, it is highly desirable to have a device or system

that can extract as much or more information from the SCG

without ECG. Furthermore, unlike ECG, SCG has an added

advantage that it is magnetically compatible, i.e., it can

be obtained with sensors immune to magnetic interference.

Magnetic compatibility makes SCG a potentially useful tool

for removing vibration-induced impairments from MRI [11],

[12].

The ability to reliably extract timing information from

the SCG alone is therefore desirable. In particular, a clean

SCG waveform of a cardiac cycle (heart beat) is necessary

for SCG-based diagnoses. This problem has received little

attention, but there is a method in [13] which uses the time

widths of the raising edges in the SCG time series to detect

what is called the pseudo-period, that is the main swing of

the SCG waveform of a cardiac cycle; more specifically,

the main swing occurs in the systolic complex (contraction

phase) of each cardiac cycle. The method assumes that the

main swing’s duration remains constant for different heart

beats. This approach seems to work reasonably well for a

clean SCG record, but we seek a more robust algorithm in

order to deal with poor-quality SCG data obtained from low-

cost MEMS-based accelerometers, subject to various sources

of interference and noise.

In this paper we propose a robust method to extract the

timing from the SCG alone. This timing directly conveys

heart rate information. The precise time location of each

occurrence of the SCG waveform allows us to obtain a

clean SCG waveform estimate by time averaging noisy SCG

segments identified by the timing locations.

II. SIGNAL MODEL AND ALGORITHMS

A. Signal modeling

It has been determined that resting seismocardiogram is

stable over a period of at least 3 months [1]. Assuming a

perfect accelerometer affixed to a given point on the outer

chest wall of a given person, the sensor response in a given

direction to any isolated heart beat can be represented as a
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function of time s(t), t ∈ [0,∞). By the resting SCG being

stable means that s(t) is the same for all resting heart beats

within a typical measurement time interval (e.g., minutes

long). As the heart continues to beat, by superposition the

sensor response traces out a time series

x(t) =

∞
∑

k=0

s(t− tk) , (2.1)

where tk represents the start time of the kth beat, with tk <

tk+1. Here, the term “start time” of a heart beat need not be

defined precisely, but it’s sufficient for our purpose to define

it as some point shortly before the main swing of the SCG,

such as the time point of the P-peak [3] of the ECG. The time

between two consecutive beats is not constant and appears

somewhat random from beat to beat, so tk is not known.

Although acceleration is an analog quantity, it can be

assumed to have finite spectral bandwidth in practice. With

a sufficiently high sampling rate, it can be converted to a

discrete-time process without loss of information. Therefore,

we only deal with discrete-time processes in this paper.

Because each heart beat delivers a finite energy, s(t)
has finite energy, i.e.,

∑∞

t=0 s
2(t) < ∞. Actual SCG data

suggests that practically all the energy of s(t) is contained

within a time interval [0, L) shorter than the time between

consecutive heart beats. This is manifested by the fact that

a clean SCG time series shows clear repetitions of the same

waveform over time such that the heart beats can be visually

identified.

Existing works indicate that the SCG waveform s(t)
contains information that can be used to perform diagnoses

such as CAD detection [3] or give certain indicator such as

the cardiac output [8]. Much of the information is carried

in the morphology of the SCG waveform and therefore

having a clean SCG waveform is crucial to the reliability

of such diagnoses and indicators. However, obtaining a

clean SCG waveform directly from an accelerometer is not

practical, because sensor responses are inherently noisy, and

measurements are subject to interferences due to the subject’s

movements, breathing and heart noises. With impairments,

the data can be modeled as

r(t) = x(t) + w(t) , (2.2)

where w(t) represents the combination of all impairments

and is treated as a random process.

Given only the observation r(t) in some finite time interval

[0, N−1], we seek a reliable estimate of the SCG waveform.

To achieve this, we propose to find the starting time location

of each occurrence of s(t) in the record of r(t), and then per-

form time averaging to suppress the interferences and noises.

Specifically, for each k = 1, 2, ..., ν, we first determine tk,

i.e., the starting time of the k-th beat to construct a length-L

time series comprising L consecutive time samples of r(t)
starting from t = tk; and obtain an estimate of s(t) as

s̄(t) =
1

ν

ν
∑

k=1

r(t+ tk) , t = 0, 1, 2, ..., L− 1, (2.3)

assuming w(t) is a zero-mean uncorrelated process.

B. Timing detection

Given an N -sample observation record {r(t)}N−1
t=0 , timing

can be determined as follows. Define the vectors

r(k)
�
= [r(k), r(k + 1), ..., r(k + L− 1)]T (2.4)

w(k)
�
= [w(k), w(k + 1), ..., w(k + L− 1)]T . (2.5)

The basic idea employed here is to use r(τ), with some

fixed τ , as a reference and then perform hypothesis testing to

discriminate between r(τ) and r(k) for k = 0, 1, ..., N − 1.

For any fixed τ ∈ {0, 1, ..., N − 1}, there is an i such that

ti ≤ τ < ti+1, i.e., τ = ti + d < ti+1 with d ≥ 0. With the

assumption of no inter-beat interference,

r(τ) = s+w(τ) (2.6)

where s contains samples from the vector

s
(i) �

= [s(0), s(1), ..., s(ti+1 − ti − 1)]T . (2.7)

More specifically, if ti + d + L − 1 < ti+1, then s =
[s(d), s(d+1), ..., s(d+L−1)]T . Otherwise, s = [s(d), s(d+
1), ..., s(ti+1−ti−1), s(0), s(1), ..., s(ti+d+L−ti+1−1)]T .

The choice of τ is not crucial, but it should be chosen such

that r(τ) captures most of the energy of s(t), e.g., ||r(τ)||2

is maximum.

Now, if k = tj + d for some j and the same d as above,

then r(k) = s+w(k). That is, r(τ) and r(k) in this case are

noisy versions of the same underlying signal s, and therefore

τ + t and k + t (0 ≤ t < L) mark the same point in the

cardiac cycle but lie in two different heart beats. From this

insight, we decide for each k whether r(k) matches r(τ) by

testing the hypothesis H1 against H0, where

H1 : r(τ) = s+w(τ) (2.8)

r(k) = s+w(k) (2.9)

H0 : r(τ) = s+w(τ) (2.10)

r(k) = s̃+w(k) (2.11)

with s̃ consisting of samples from a different interval of

the SCG waveform than the interval for s. For simplicity,

we assume that w(τ) and w(k) are uncorrelated and admit

the Gaussian distribution N(0
¯
, N0IL), where IL denotes

the L × L identity matrix. Note that s, s̃ and N0 are all

unknown. Although hypothesis H0 as defined by (2.10) and

(2.11) comes directly from our basic signal model (2.1), it

is unwieldy because it does not allow for easy estimation

of all the unknowns s, s̃ and N0 simultaneously. However,

because s̃ and s are different, the correlation between r(τ)
and r(k) under H0 is weak and therefore, we treat them as

uncorrelated Gaussian vectors by adopting the model

H0 : r(τ) =w(τ) (2.12)

r(k) =w(k) (2.13)

w(τ),w(k)∼N(0
¯
, N0IL) . (2.14)

Depending on the hypothesis, the maximum-likelihood (ML)

estimates for N0 and s are differently obtained. Under H1,
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the ML estimates for s and N0 respectively are

ŝ=
r(τ) + r(k)

2
(2.15)

N̂0 =
||r(τ)− r(k)||2

4L
. (2.16)

Under H0 as defined by (2.12)–(2.14), the ML estimate for

N0 is

Ñ0 =
||r(τ)||2 + ||r(k)||2

2L
. (2.17)

The generalized likelihood ratio (GLR) of H1 over H0 is

defined as

Λ(k; τ)
�
=

f(r(τ), r(k)|s = ŝ, N0 = N̂0, H1)

f(r(τ), r(k)|N0 = Ñ0, H0)
(2.18)

=
2L(||r(τ)||2 + ||r(k)||2)L

(||r(τ)− r(k)||2)L
. (2.19)

where f(r(τ), r(k)|s = ŝ, N0 = N̂0, H1) is the prob-

ability density of (r(τ), r(k)) with the unknowns being

replaced by their respective estimate under H1. Similarly,

f(r(τ), r(k)|N0 = Ñ0, H0) is the probability density of

(r(τ), r(k)) where the unknown N0 is replaced by its es-

timate under H0. We define the root GLR as

R(k; τ)
�
=

1

2
(Λ(k; τ))1/L =

||r(τ)||2 + ||r(k)||2

||r(τ)− r(k)||2
. (2.20)

To find the values of k at which it is decided that r(k) closely

aligns with r(τ), we define the function

Q(k; τ)
�
=

{

R(k; τ), R(k; τ) > Rt

0, otherwise
(2.21)

for some threshold Rt. A timing match is declared at k = ki
if and only if Q(ki; τ)−Q(ki−1; τ) > 0 and Q(ki+1; τ)−
Q(ki; τ) < 0; basically ki is the location of a local peak

above Rt. Empirical data shows that Rt = 1.5 provides good

discrimination [see Fig. 3(a), where each ki locates a sharp

peak indicated by a circle]. Note that R(τ ; τ) = ∞.

Accelerometers typically provide data in three orthogonal

directions (x, y and z axes) to represent the complete

acceleration vector. The algorithm above can be extended to

use the data from all three axes. To do so, (2.4) is redefined

as

r(k)
�
= [rTx (k), r

T
y (k), r

T
z (k)]

T (2.22)

rv(k)
�
= [rv(k), rv(k + 1), ..., rv(k + L− 1)]T (2.23)

where v ∈ {x, y, z} and rv(k) is the sensor response in direc-

tion v. If timing matches are declared at k = k1, k2, ..., kν ,

the ML estimate of s based on the data at the timing matches

is given by

s̄ =
1

ν

ν
∑

i=1

r(ki) . (2.24)

It is of practical interest to minimize the computational

complexity. One part of this optimization is to avoid com-

puting the GLR at unnecessary times. As soon as a timing

match is declared at k = ki, all computations can be skipped

Fig. 1: Picture of the SCG sensor used for the experiment

at k = ki+2, ki+3, ..., ki+M , whereM is some conservative

estimate of the inter-beat time. Computations are resumed at

ki+M +1 until the next timing match ki+1 is declared. The

process is repeated and can be done in real time.

III. NUMERICAL RESULTS AND CONCLUSION

To test the algorithm described above, we apply it to a

data record obtained by measuring the heart activity of a

volunteer. The measurement device used is the 3-axis digital

accelerometer MMA8451Q made by Freescale Semiconduc-

tor shown in Fig. 1. The sensor is placed such that the z-axis

is approximately perpendicular to the volunteer’s chest wall.

The sampling rate is set at 200 samples per second.

Shown in Fig. 2 is the sensor response in the z-direction.

The responses for the x and y directions are similar to that for

the z direction and are omitted from this figure to save space.

We note that the sensor response in each direction tends to

have a linear trend over time, including a nonzero mean due

to imperfect calibration. A preprocessing step can be done to

remove the linear trend by applying a linear least-squares fit.

Fig. 3 shows the results obtained by applying the algorithm

to the preprocessed data. Part (a) shows the root GLR for each

time index; sharp peaks arise at indices that indicate timing

matches. The vector length used is L = 200 and the decision

threshold is Rt = 1.5. Shown in parts (b), (c) and (d) are

the estimated SCG waveforms for the x, y and z directions,

respectively, obtained by averaging according to (2.24). The

estimated SCG waveforms exhibit a typical morphology.

In conclusion, the GLRT based algorithm is robust and

able to definitively decide between presence or absence of

a timing match at each time step. The heart rate can be

directly computed from the rate of occurrence of timing

matches. Once an estimated SCG waveform s̄ is available, it

can be used in place of the reference segment r(τ) in (2.8)-

(2.13) to improve the discrimination performance on future

data, such as in applications with live data feeds. One note

of caution is that although the method can provide a good

estimate for the SCG waveform, it does not guarantee that the

estimate is free of influences that consistently alter the sensor

response. For example, the manner in which the sensor is

attached to the chest, such as the amount of pressure applied

to create a sufficiently firm contact between the chest wall

and the sensor, can affect the response waveform. This may

be important for morphology based diagnoses and warrants

further study.
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Fig. 2: (a) Accelerator response in the z-direction while the subject sat still and held its breath. (b) a close-up view of (a).
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Fig. 3: The root GLR for L = 200 (a), and the estimated SCG waveforms in the x (b), y (c), and z (d) directions.
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