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Abstract—In this paper, we present preliminary results of 
subject’s mental workload and task engagement assessment in 
an experimental space suit. We have quantified the mental 
workload and task engagement based on changes in 
electroencephalogram (EEG). EEG signals were collected from 
subjects scalp using a commercial wireless EEG device in two 
experimental conditions – when subjects did not wear space 
suit (control condition) and when subjects wore space suit. 
Brain state changes were estimated and compared with the 
direct responses for different tasks and different conditions. We 
found that the spacesuit experiment introduced a greater 
mental workload where subject's stress levels were higher than 
control experiment. 

I. INTRODUCTION 

odern operational environments such as driving a 
vehicle demands maintaining high level of 

performance by the operator for a longer period of time [1]. 
A reliable interface between human and machine is therefore 
would be useful ensuring operator’s performance and 
security [1]. Real-time monitoring of the operator’s status is 
now made possible by means of a human-computer interface 
system which can be used to monitor operator’s performance  
as well as to alter the level of automation through a closed-
loop feedback mechanism [2]-[4]. Such a system is useful in 
the intervention of undesirable situations, thus improving the 
efficiency, productivity, and safety [2]-[4]. 

Electroencephalogram (EEG) is the recording of brain’s 
electrical activity. EEG can be recorded non-invasively 
using surface electrodes from the scalp. Numerous 
physiological parameters such as cardiovascular indices and 
galvanic skin response (GSR) have been used in previous 
studies to determine the changes in cognitive states [5]-[7]. 
EEG signals have been shown to be capable of revealing 
subtle changes in attention and mental workload [5]-[7]. 
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EEG signals can identify and quantify dynamic changes in 
brain states on a segment by segment based analysis [5]-[9]. 
Previous studies have reported EEG measures of mental 
workload and task difficulty of air traffic controllers, pilots, 
drivers, and participants performing neuro-cognitive tasks 
[5]-[9]. Correlations between the subjective measures of 
human performance and the indices of cognitive state 
changes were found significant in earlier studies [10]-[11]. 

One of the methods to analyze EEG involves 
decomposing it into four fundamental power spectral bands, 
i.e., delta (0-12 Hz), theta (4-7 Hz), alpha (7-12 Hz), and 
beta (12-30 Hz) [9]-[11]. These spectral band powers of 
EEG or the ratios between them are highly correlated with 
changes in cognitive states [12]. Prinzel and colleagues have 
reported improved performance in vigilance task using an 
EEG engagement index [13]. The EEG index for task 
engagement was computed by dividing the beta band power 
(12-30 Hz) by the sum of the alpha band power (7-12 Hz) 
and the theta band power (4-7 Hz) [13]. EEG power spectral 
density (PSD) values were used as inputs into a classifier 
model so as to be able to identify and classify cognitive 
states such as attention, engagement and workload (mental 
demand) [5].  Both linear and non-linear classifier models 
such as linear discriminant analysis (LDA), artificial neural 
networks (ANN), quadratic and logistic function analysis 
have been used in earlier studies to classify EEG signals [4]-
[13]. 

In another study, Pope et al. developed a biocybernetic 
system and used several indices derived from EEG for 
evaluating operator’s task engagement [14]. The index 
computed by the ratio of alpha power to the sum of alpha 
and theta power was found to best reflect the task 
engagement [14]. Lin et al. proposed a system to estimate 
auto driver’s drowsiness using EEG [15]. They have 
designed their experiment using a “virtual-reality-based 
driving simulator” and estimated the driver’s mental 
performance quantitatively [15]. Berka et al. described a 
hardware and software system for real-time monitoring of 
alertness and mental workload using EEG indices [9]. They 
showed that across participants, engagement decreased over 
a twenty-minute vigilance test whereas the workload did not 
increase [9]. Workload was found to increase linearly as task 
difficulty increase for the “forward digit span”, “backward 
digit span”, “grid recall” and “mental addition test” [9]. This 
study suggested that the EEG engagement reflects 
“information gathering”, “visual processing”, and 

Preliminary Results of Mental Workload and Task Engagement 
Assessment using Electroencephalogram in a Space Suit   

Ahmed F. Rabbi, Student Member, IEEE, Abongwa N. Zony, Pablo de Leon, and        
 Reza Fazel-Rezai, Senior Member, IEEE 

M

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

3549978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

“allocation of attention” [9], [16]. Also, it showed that the 
EEG measures correlate with subjective and objective 
performance metrics [9], [16]. 

In this paper, we have studied the changes in EEG activity 
by computing an EEG index in response to a set of 
neurocognitive tasks performed in a space suit [13]-[14]. 
The results were compared to the same tasks performed in a 
control experiment where subjects were provided with a 
normal environment. We also compared the EEG activity 
with the direct responses. 

II. METHODS AND MATERIALS 

A. Experimental Design 

Our study was approved by the institutional review board 
(UND IRB-201003-285). Five healthy subjects were 
recruited in a strictly voluntary manner; all of them were 
males within the age range of 21-45. Subjects were briefed 
about the space suit by an aerospace engineer (one of the co-
authors of this paper). The time required for each subject for 
each experiment was approximately 70 minutes. However, 
for this study we have used first three tasks with duration of 
23 minutes as shown in Table 1. The space suit experiment 
and the control experiment for each subject were carried out 
on separate days but at the same period (morning or 
afternoon) of day. No other intentional efforts were made to 
counter balance the two experiments. A consent form was 
presented to the participant and the participant was allowed 
to review the form before signing. Each participant was 
given a questionnaire to fill out before and after the 
experiment. At the end of each experiment, the EEG data 
was inspected for verification purposes. 

In this study, we designed an experiment as a part of 
testing of the NDX-1 (North Dakota experimental space suit 
first generation) space suit. This planetary space suit has 
been developed in the Space Suit Laboratory of The 
University of North Dakota. Though space suit testing goes 
through different phases such as performing routine tasks by 
an astronaut as well as space walk simulations, we primarily 
focused on subjects performing routine tasks while wearing 
the space suit. This minimizes the movement related artifacts 
and other challenges in acquiring EEG data in a simulated 
space walk.  

B. Data Acquisition 

We used a commercially available EEG acquisition 
system for this study. The wireless EEG acquisition system 
consists of the head set and the B-Alert®/AMP (attention 
memory profiler) software [16]. The headset consists of the 
cap, head strip holding the sensors, and RF (radio frequency) 
wireless transmitter. Data were collected from six EEG scalp 
sensors (POz, C3, C4, Cz, F3 and Fz) and one 
electrocardiogram (ECG) electrode placed on the subject’s 
chest. The signal was transmitted wirelessly to a host 
computer.  Data were transmitted from the head set 
transmitter to the computer through six channels; five of 
these channels acquire EEG and one for ECG. EEG data 

were acquired by differential measurements through these 
channels. These channels are: FzPO (between Fz, Poz), 
CzPO (between Cz, Poz), FzC3 (between Fz, C3), C3C4 
(between C3, C4), and F3Cz (between F3, Cz). The signal 
sampling frequency was 256 Hz. The analysis presented is 
for a single channel. 

C. Neurocognitive Tasks Battery 

The Attention Memory Profiler (AMP) of the B-Alert® 
software system [16] comprises a set of neurocognitive tasks 
used to estimate human performance. In this study, three of 
those tasks were used. These tasks are three basic tasks 
which represent different brain states, for example, alertness 
(“Eyes open”, task # 1), relax state (“Eyes closed”, task # 2) 
and vigilance (“Three choice vigilance task”, task # 3).  

TABLE I 
SUMMARY OF ATTENTION AND MEMORY PROFILER TASKS [17] 

Task no. Task name Task time 
(minute) 

1 Eyes Open (EO) 5 
2 Eyes Close (EC) 5 
3 Three Choice Vigilance (3CVT) 13 

 
For the EO task (task 1), the subject was presented a 

flashing red object on the computer monitor at varying time 
intervals. The subject was required to respond by pressing 
the spacebar on the computer keyboard immediately after 
the object was presented. The EC task (task 2) was similar to 
the EO except that a sound pulse was presented instead of a 
flashing object. The subject (with eyes closed) was required 
to press the spacebar on the computer keyboard following 
the stimulus (sound). For the 3-CVT (task 3) task, the 
subject was presented three flashing objects at varying time 
intervals. These objects were: a triangle pointing up, a 
triangle pointing down and a diamond. The subject pressed 
the left arrow key or right arrow key on the keyboard in 
response to the triangle pointing up and the triangle pointing 
down (or diamond) respectively [16]. For our experimental 
scenario, EO and EC are of low task difficulty level while 
3CVT is of moderate difficulty. 

D. Preprocessing and Feature Extraction 

During the space suit experiment condition we had to 
consider the artifacts and noise issues which could badly 
contaminate the data. Some of those artifacts are due to eye 
blinks, movement related artifacts. In addition to the power 
line noise, high frequency noise from the oxygen supply 
could affect the data. The B-Alert® software consists of eye 
blinks detection and filtering algorithms which filtered out 
the eye blinks from raw EEG. Further, we used a 0.5-30 Hz 
fourth order Butterworth band-pass filter in order to reduce 
the high frequency noise and obtain the signals of interest. 
The band-pass filtering also reduces low frequency muscle 
and movement artifacts. 

After the preprocessing, the EEG signals were segmented 
into overlaying 256 data point segments (50% overlapping). 
Fast Fourier Transform (FFT) was then applied to each 
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segment (1 second duration) of the filtered EEG signals to 
determine the relative Power Spectral Density (PSD) for: 
delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12 
– 30 Hz) frequency bands. We chose these features for our 
experiments as previous studies have shown that the relative 
power of the fundamental EEG bands strongly correlates 
with the human neurocognitive states. Finally, an EEG index 
was computed as the ratio of beta power to the sum of alpha 
power and theta power [13]-[15].  

III. RESULTS 

The direct responses to the three baseline tasks were 
available for further analysis. We used this information to 
compare the performances for the tasks for both the control 
and space suit experiments. Fig. 1 shows the percentage 
correct of the answers for three tasks for all five subjects.  

 
  
 Fig. 1. Comparison of direct responses during three baseline tasks for 
 two experimental conditions. 

 
To further investigate the EEG index (the ratio of beta 

power to the sum of alpha power and theta power) changes 
with the task difficulty, we computed the mean index across 
the subjects for these three tasks as shown in Fig. 2.  

 
  
 Fig. 2. Normalized brain index (EEG Index) variations during three 
 baseline tasks for two experimental conditions. 

 
We found a trend of decrease in performance with time as 

well as the increase in task difficulty. The EO and EC tasks 

could be identified as having low task difficulty and the 
3CVT as having moderate task difficulty level. Percentage 
correct was highest in the EO task whereas it falls during the 
3CVT task. The Fig. 1 and 3 also show the decrease in 
percentage correct during the space suit experiment. Fig. 3 
and 4 compare the direct responses and the mean EEG 
index. Fig. 3 shows the degradation of performance with the 
increases in task difficulty in time as subjects tend to lose 
engagement and experience fatigue. Though it was 
inconclusive of finding a similar trend from the EEG index, 
it revealed the differences observed in task engagement for 
two experimental conditions. The subjects were found to be 
more engaged in performing EO and 3CVT tasks wearing 
space suits whereas loosely engaged in EC. During EC 
subjects might have been in a more relaxed state due to the 
added complexity of a space suit environment. Two subjects 
were found highly engaged during 3CVT in space suit 
compared to their task engagement during the same task in 
control environment (subject 2 and 4 in Fig. 2). 

 
 Fig. 3. Comparison of direct responses (mean percentage correct 
 answers) variations during three tasks. 

 
  Fig. 4. Comparison of normalized brain index (mean EEG index) 
 variations during three tasks. 
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IV. DISCUSSION 

All of the subjects were found to have an overall, increase 
in beta activity for most of the tasks except the EC task. The 
increase in beta activity for both the space suit and control 
experiments suggests increased alertness (active or busy 
brain state) and this was expected as reported in a previous 
study [17].  The beta activity for the control experiment was 
generally found to be higher than that of the space suit 
experiment. As expected, the alpha band activity was 
relatively low except for the EC task where it is 
predominated. Previous reports [18] also showed that the 
alpha wave predominates during relaxed, EC tasks. 

Alertness, as measured by the beta band activity (when 
compared to alpha band activity) was remarkably high for 
most of the tasks both spacesuit and control. This was 
expected because, the battery of neurocognitive tasks was 
designed for continuous attention, and beta wave (low 
amplitude wave) was predominant during active/alert/busy 
brain states whereas the alpha band activity was 
predominant only during the eyes closed task as expected.  

V. CONCLUSION AND FUTURE STUDIES 

Considering the conditions of the simulated operational 
environment, we expect a rapid decline in the beta activity, 
and such a system could be very critical in brain state 
analysis in a real operational environment where the 
operator could spend significantly long periods performing 
mentally demanding tasks. In the future, we would focus on 
designing a closed-loop neurofeedback system that could 
effectively reduce the risk of working as well as maintaining 
good health by providing a feedback to the subject as an 
indication of his performance specifically when the 
performance level fall below a specific standard. 

Since the astronauts have to perform mission related tasks 
which require constant vigilance, the preliminary results 
from our experiment could provide an insight on the increase 
in mental workload with time, the chance of having fatigue 
and the decrease in attention as task difficulty increases. 

In future studies, we will perform analysis of all the nine 
tasks in the AMP task battery. We will also investigate the 
significant difference and affect of three fundamental EEG 
band powers and the EEG index for the different tasks 
within subjects using repeated measure ANOVA with two 
factors: control vs. space suit and electrodes location. The 
statistical analyses will provide a detail insight into the 
experiment assessing mental workload and task engagement 
of subjects in our unique experiment. 
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