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Abstract—A compact fixed-point digital implementation of a 
quadratic integrate-and-fire (QIF) neural model was 
developed. Equations were derived to determine the minimum 
number of bits the digital QIF model requires to represent all 
four states of the QIF model and control the switching 
threshold of the output voltage. In addition, the equations were 
used to minimize the size of the multiplier used for the non-
linear squaring function, V2. These design equations were used 
to develop test vectors that could unambiguously show all four 
states of a digital QIF model. The FPGA implementation of the 
QIF model was shown to be computationally efficient, 
requiring only two fixed-point adders and one fixed-point 
multiplier. 

I. INTRODUCTION 

HEQuadratic Integrate-and-Fire (QIF) neural model is 
one of the most computationally efficient neural models  

that can exhibit true spiking behavior [1]. There are eight 
typical neurocomputational properties of biological spiking 
neurons, including tonic spiking, Class 1 and 2 excitability, 
spiking latency, input integration, threshold variability, and 
bistability that the QIF can exhibit [1]. The QIF model can 
be implemented as an analog circuit, where: 

 

ܥܴ
ௗ௏

ௗ௧
ൌ ܤ ൅ ܸଶ                (1)

         
Subject to: 

 
	݋ݐ	ݐ݁ݏ	ݏ݅	ܸ ௥ܸ௘௦௘௧	݂݅	ܸ ൐ ௣ܸ௘௔௞          (2) 
 
The analog version of the QIF has advantages in direct 

biological interfacing and continuous input and output 
operation. With current technology, analog integrated circuit 
implementations of neuromorphic hardware may also have 
advantages in density and lower power operation [2].  
However, when compared with digital implementations, 
analog circuits have an inherently higher cost of 
manufacture and are more challenging to implement in a full 
custom integrated circuit [3].  

A digital QIF can leverage digital manufacturing 
processes and scale easily with technology node changes.  
This may be particularly important if an array of QIF 
neurons is implemented with the goal of high-speed 
computation [4–10] or even complex control systems [11–
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13].  A fixed point digital QIF consists of digital adders and 
multipliers or lookup tables, which are more area efficient 
than a floating point digital implementation [14-16], 
although care has to be taken to ensure accuracy.  A fixed 
point digital QIF neural model implementation allows 
dynamic adjustment of the clock frequency to balance 
computational demands, and thus power vs. performance can 
be traded off in real time. Fixed point digital 
implementations also allow the implementation of pipeline 
and serial operation so that one QIF neuron may be time 
division multiplexed into many “virtual” neurons, or one 
neuron can be made to have a very small area by performing 
serial computation [17, 18]. 

Field Programmable Gate Arrays (FPGAs) have been 
used to investigate neural processors [14] for learning, 
threshold neural models (such as McCulloch-Pitts) [19], 
conductance-based neural models(such as Hindmarsh-Rose 
or Hodgkin-Huxley) [16, 20, 21], the leaky integrate-and-
fire (LIF) neural model [17, 22–25], the QIF neural model 
[25–28], the Fitzhugh-Nagumo neural model [18], and the 
Izhikevich neural model [29, 30]. FPGAs not only allow 
rapid prototyping of neural models, but can also be used to 
investigate the relationship between fixed-point word length 
and synthesized area. 

Although there have been many reports concerning the 
appropriate word length of the fixed-point operation of the 
neural models [16, 17, 19, 21–24, 26, 29, 31–34], word 
length design equations have not yet been presented. The 
reported bit widths range from 10 bits for an LIF model 
meant for applications in visual perception [24] to 32 bits for 
a Hodgkin-Huxley model intended for biointerfacing [16]. 
The smallest bit width reported for QIF is 16 bits [26]. The 
smallest reported bit width for an Izhikevich model (an 
extension of the QIF) is 24 bits [29]. 

Besides controlling the word length of a neuron to keep 
complexity low, look-up tables [18] or piecewise linear 
approximations [20] have been used to reduce the 
computational complexity of the required nonlinear 
functions (such as V2 or V3) that ensure a bistable neural 
response.  Researchers have successfully used a 2-piecewise 
approximation to approximate V2 in a QIF model [26-28]. 

In this work, a QIF neural model using nine bit vectors in 
2’s complement is demonstrated.  The approach to reducing 
the complexity of the neuron model (selecting the word 
length and minimizing the multiplier width used for the V2 

function) was to develop and use design equations for the 
system. 
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The organization of the paper is as follows. First the 
architecture of the QIF model is presented. Then, system 
design equations for Vpeak and Vth are derived followed by an 
overview of the four states of a QIF neural model and the 
design equations used to develop test vectors that are then 
verified in simulation. Results showing that a nine-bit QIF 
model can demonstrate all states are then shown in 
simulation (Excel, Verilog), along with the results from a 
QIF synthesized with an FPGA. 

Fig. 1 shows a fixed point QIF implementation. The 
signals and blocks are defined in Table 1.  The discrete 
system equation describing the QIF implementation of Fig. 1 
is: 

 

௡ܸ ൌ ሺܸ௡ିଵሻ ൅ ൫ܸଶሺ௡ିଵሻܣ ൅  ሺ௡ିଵሻ൯        (3)ܤ
 

The multiplier is denoted by X, addition by +, and delay 
(flip-flops) by Z-1. 

TABLEI 
Definition of Terms. 

Term Definition 
A Gain of the integrator, unitless, input 
B Input to the circuit, which has two 

parts, the steady state value, and a 
dynamic value. (Volts) 

Vpeak This is the value, which if V is greater 
than will cause V to be set to Vreset. 
(Volts) 

Vreset The value V is set to after a reset event. 
(Volts) 

Vth When V>Vth, the circuit will spike. 
V Output voltage of the QIF. (Volts) 
rst The signal that sets V to Vreset, and the 

other delay elements to 0, when V >Vth 
clk System clock signal 

 
Not shown in Fig. 1 is the comparator used to detect if 

V>Vpeak.  For example, a nine bit (2’s complement) wide 
system (eight data bits with the most significant bit (MSB) 
used as the sign bit), all registers (delay) would be nine bits 
wide.  The adders would be nine bits wide with no carry in 
or carry out. (Overflow is prevented by proper selection of 
Vpeak.)  Only the least significant bits of V are fed into the 
multiplier. For a nine bit (2’s complement) system, this 
would be the lower 4 bits.  A reset event would occur if any 
of the upper significant bits were equal to one, and the MSB 
were equal to zero. All of the data bits are integers, given 
that the data can be shifted before and after entering the 
system to account for data to the right of the decimal point.  
The model could include fractional data by appropriately 
shifting the data output by the multiplier (V2). 

II. SYSTEM DESIGN FOR A QIF NEURAL MODEL 

Design issues that must be dealt with when designing a 
fixed point QIF neuron are minimizing the size of vectors 
and preventing overflow of the multiplier. 

 
Fig. 1.  Signal flow graph of QIF. 

 
 For example, a multiplier with 8 bit wide data inputs, 

outputs a vector that is 16 bits wide (plus the sign bit).  Since 
the multiplier is fed back into the system, this means that V2 
could cause the system to overflow.  This problem is solved 
by choosing Vpeak (the reset condition) such that V2 will not 
cause an overflow. To determine the maximum Vpeak for the 
number of bits in a system (m) use the flowing equation, 
neglecting the sign bit: 

 

௠ܸ௔௫
ଶ ൌ 2௠ െ 1                (4) 

 
that results in: 

 

௣ܸ௘௔௞ ൌ ௠ܸ௔௫ ൌ √2௠ െ 1            (5) 
 
For an eight bit width (ignoring the extra sign bit) system, 

Vpeak would be set to 15.  This can be done by monitoring the 
4 most significant bits of V, and setting registers that receive 
V2 and B to zero and the register that receives V to Vreset, 
when at least one of these bits is set to 1 and the MSB is 
equal to 0. 

Another important design parameter for the QIF circuit is 
Vth. If Vn is greater than or equal to Vth the output voltage Vn 
will spike, even if the input is brought back to less than 0V. 
An expression for a digital QIF model’s Vth can be found. 
For the system to integrate the following condition must be 
met: 

 
൫ ௡ܸିଵ

ଶ ൅ ௡ିଵ൯ܤ ൈ ܣ ൒ 2ି௉           (6) 
 
Where P is the precision of the fixed point system and is 

the number of digits to the right of the “binary” point. For 
example, if P was set equal 1, the precision would be 0.1. 

If the system is at the switching threshold then: 
 

௡ܸିଵ ൌ ௧ܸ௛                  (7) 
 

Substituting equation7 into equation 6: 
 
൫ ௧ܸ௛

ଶ ൅ ௡ିଵ൯ܤ ൈ ܣ ൌ 2ି௉            (8) 
 

Assuming the input Bn is set to a number less than or equal 
to zero: 

 

௧ܸ௛ ൌ ටଶషುି஺ൈ஻೙షభ
஺

               (9) 
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For this work the precision and Bn were set to zero and 
thus equation 9 reduces to: 

 

௧ܸ௛ ൌ ටଵ

஺
                  (10) 

 
The input gain A, can be implemented with simple right 

shifting (with respect to the decimal point) of the sum of 
V2

nand Bn, which results in dividing by powers of two.  Vth 
as a function of Gain can be seen in table 2. 

Verification of the designed Vth is easily accomplished by 
graphing equation 3 (subject to the reset condition) for 
values of Bn that generate a single spike.  Specifically, set Bn 
constant until a spike is observed and then set the following 
Bn’s to zero, and set Vreset to below Vth. A model that uses 
the dec2bin, bin2dec, and some hand coded 2’s complement 
data functions to simulate a fixed point system was 
developed in Excel. An example is plotted in Fig. 2.  For 
values of n from 0 to 8, integration occurs, and then the 
input is set to Vreset, at n=9. In this case, Vreset is three, and 
since Vreset<Vth no further spiking occurs.         

For further proof that Vth has been designed properly one 
may use the same test vector shown in Fig. 2, but instead 
change Vreset=Vth. The result is plotted in Fig. 3.  For values 
of n from 0 to 8, integration occurs, and then the input is set 
to zero at n=9. In this case, Vreset is four and since Vreset=Vth 
spiking occurs regardless of Bn.  Figs. 2 and 3, show that the 
circuit will not spike without input if Vn is less than Vth, and 
it will spike without input if Vn is equal to Vth (instability).  
In this fixed point system, there are no fractional numbers 
and as a result all Vth’s are rounded to the next whole 
number as shown in Table 2.An engineer can easily design 
test vectors using the equation for Vth that demonstrate 
monostable or bistable behaviors by simply setting Vreset to 
below or above Vth. 

 

 
Fig. . Digital QIF Excel model results showing integration. A=0.0625, 
Vpeak=15V, Vreset=3V, Vth=4V. The signal Vn is denoted by (□), and the 
signal Bn is denoted by (◊) .Vth is shown as a black dashed line (-). 

 

 
 
Fig. 2.  Digital QIF Excel model results showing bistability. A=0.0625, 
Vpeak=15V, Vreset=Vth, Vth=4V. The signal Vn is denoted by (□), and the 
signal Bn is denoted by (◊). Vth is shown as a black dashed line (-). 

 
 

TABLE II 
Vth as a function of Gain (Bn reset to 0V). 

Right 
shift 

A Calculated Vth Observed Vth 

0 1 1 1 
1 0.5 1.41 2 
2 0.25 2 2 
3 0.125 2.82 3 
4 0.0625 4 4 

III. VERIFICATION OF THE TWO STATES OF A DIGITAL QIF 

CIRCUIT 

Although there are eight neural behaviors that a QIF can 
exhibit, for testing/verification purposes, a more thorough 
approach (based on knowing Vth) is to evaluate the 
fundamental neurocomputational properties embodied by a 
dynamical system. There are three characteristic behaviors 
that a QIF model can exhibit [35]: 

1. Integrator 
2. Bistable 
3. Monostable 

The integrator behavior of a QIF is characterized by the 
output V, increasing when the input B, is greater than zero. 
The bistable behavior of a QIF occurs when the Vreset is 
greater than Vth and the monostable state occurs when Vreset 
is less than Vth.The bistable and monostable behaviors are 
mutually exclusive.  This leads to two possible states: 

1. Bistable, integrator (steady state of Bn is greater 
than zero Volts, Vreset>Vth) 

2. Monostable integrator (steady state of Bn is greater 
than zero Volts, Vreset<Vth) 

These two states can be easily observed based on the 
above conditions and the fact that Vth can be calculated from 
the gain parameter A (eq. 10) and are shown in Figs. 4-7. 
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Fig. 3. Digital QIF excel model results showing the bistable, integrator 
state. A=0.0625, Vpeak=15V, Vreset=6V, Vth=4V. The signal Vn is denoted by 
(□), and the signal Bn is denoted by (◊). Vth is shown as a black dashed line 
(-). 

 
The QIF operating in the bistable-integrator state can be 

seen in Fig. 4. The circuit oscillates at relatively the same 
frequency for all positive values of B, once the circuit starts 
to spike.  For B values of 1, 16, and 20, the spiking rate is 
one spike per fours clock cycles.  For a B value of 30, the 
spike rate is one spike per three clock cycles.  The bistable 
behavior can be seen because from clock cycle zero to three 
there is no spiking when B is set to zero Volts, but the circuit 
still spikes from clock cycles 30 to 40 even though the input 
is reset to zero volts because V is always above Vth.  

The monostable-integrator state is demonstrated in Fig. 5. 
From clock cycle 0 to 30, the spiking frequency increases 
with increasing B values.  The spiking rates for constant B 
values of 16, 20, 30, and 40  is 1 spike per 9 clock cycles, 1 
spike per 9 clock cycles,1 spike per 7 clock cycles,1 spike 
per 6 clock cycles, respectively.  The circuit stops spiking at 
clock cycle 31 when the input is set to 0V, which 
demonstrates monostable behavior. 

 

 
 
Fig. 4. Digital QIF excel model results showing the monostable, integrator 
state. A=0.0625, Vpeak=15V, Vreset=0V, Vth=4V. The signal Vn is denoted by 
(□), and the signal Bn is denoted by (◊) .Vth is shown as a black dashed line 
(-). 

IV. FPGA VERIFICATION OF DESIGN EQUATIONS 

The QIF model was synthesized with ISE Design Suite 11 
(32bit) into a Xilinx 100K Spartan 3E FPGA.  The power 
consumption of the QIF model and the logic used to 
interface with the QIF was 34mW at a clock frequency of 
12MHz. The efficiency of the digital QIF model can be seen 
Table 2. 

The chip was tested and controlled with a USB interface 
with a Demand Peripherals Baseboard-4 development kit 
(http://www.demandperipherals.com/baseboard4.html).The 
Baseboard-4 development kit was selected because it is an 
inexpensive prototyping environment that can directly 
control motors used in robotic applications.  A 1672G 
Standalone Logic Analyzer was used to generate the test 
vectors, and a Logicport 34 channel logic analyzer was used 
to capture the output vector. 
 

TABLE III 
Device Utilization Summary of Digital QIF Implemented in a FPGA. 

 
 
Fig. 6 shows spiking being turned off as the input is set to 

-30 at n=104.  The input vectors where chosen to verify the 
FPGA implementation of the digital QIF model, because 
these vectors required special consideration of 2’s 
complement in the Excel worksheet.  Fig. 7 shows that the 
QIF model implemented in Verilog gives the same results as 
the excel model used to verify the Vth, design equation. Fig. 
7 was generated from the raw measured data from the FPGA 
shown in Fig. 8. The timing data was replaced with clock 
cycle N, to more easily compare the Excel QIF model and 
the FPGA QIF implementation.   
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Fig.6. Digital QIF Excel model results showing the spiking of the bistable, 
integrator state being started and stopped with input vector B. A=0.0625, 
Vpeak=15V, Vreset=5V, Vth=4V. The signal Vn is denoted by (□), and the 
signal Bn is denoted by (◊). Vth is shown as a black dashed line (-). 

 
Fig.7. Digital QIF Verilog model results showing the spiking of the 
bistable, integrator state being started and stopped with input vector B. 
A=0.0625, Vpeak=15V, Vreset=5V, Vth=4V. The signal Vn is denoted by (□), 
and the signal Bn is denoted by (◊). Vth is shown as a black dashed line (-). 

 
 

 
Both states were also implemented for gains of 1, 0.25, 

and 0.125 (not shown).  Even though the system did not 
have a large dynamic range for A=1, only nine bits were 
required to demonstrate all four states.  Since the gain A, is 
just another input vector, it can be used to mimic the slow 
variable of the Izhikevich model or act as an adaptive 
controller that can self-learn a control signal routine. 

V. CONCLUSIONS 

Design equations for a fixed point digital implementation 
of a quadratic integrate-and-fire neural model were 
developed and verified in Excel and Verilog. 

 
dynamical computational states were demonstrated in a 

FPGA.  To show all four states of a QIF model, only a 9 bit 
word length was required. This minimized the multiplier to 
an input width of four bits. Future studies include using this 
system as a reset controller in a robotic system, an ASIC 
implementation, and using the model to study networks of 
QIF neural models. 
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