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Abstract— Automatic administration of medicinal drugs has
the potential of delivering benefits over manual practices in
terms of reduced costs and improved patient outcomes. Safe and
successful substitution of a human operator with a computer
algorithm relies, however, on the robustness of the control
methodology, the design of which depends, in turn, on available
knowledge about the underlying dose-response model. Real-
time estimation of a patient’s actual response would ensure
that the most suitable control algorithm is adopted, but the
potentially time-varying nature of model parameters and the
limited number of observation signals may cause the estimation
problem to be ill-posed, posing a challenge to adaptive control
methods. We propose the use of Bayesian inference through
a particle filtering approach as a way to overcome these
limitations and improve the robustness of automatic drug ad-
ministration methods. We report on the results of a simulation
study modeling the infusion of vasodepressor drug sodium
nitroprusside for the control of mean arterial pressure in
acute hypertensive patients. The proposed control architecture
was able to meet the required performance objectives under
challenging operating conditions.

I. INTRODUCTION

Dynamical systems modeling the dose-response relation-
ship of medicinal drugs can be characterized by a high level
of uncertainty and variability in the values of the model
parameters (observed both across the patient population,
interpatient, and for an individual patient over time, intra-
patient) [1]. In current clinical practice, operators administer
an initial drug amount, generally according to population
statistics, followed by close monitoring and periodic manual
adjustment of the dose on the basis of the actual observed
clinical outcome. Such an approach is staff-intensive and
prone to human error. Clinical studies have demonstrated
the potential of delivering superior outcomes when automatic
feedback control of administration has been implemented [2].
Ultimate safety of such automatic approaches, however, rests
on the robustness of the control methodologies adopted. This
remains a challenge [3], since large uncertainty and time-
variability demand the use of adaptive control [4], while the
availability of only a small number of noisy observation
signals may limit the ability to accurately estimate the
patient’s response and inform adaptation [5].

We consider the specific application of controlled infusion
of sodium nitroprusside (SNP). Several approaches for con-
trolled SNP infusion have been proposed in the past (see [6]
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for a review). SNP is a fast-acting vasodepressor which is
administered continuously and intravenously to control mean
arterial pressure (MAP) during acute hypertensive episodes,
generally exhibited by postoperative patients in critical care
settings [7]. It should be acknowledged that SNP is no longer
the most commonly used drug for this purpose and that other
active ingredients with lower toxicity have been developed
in recent years [7]. Nonetheless, SNP is an interesting case
study from an engineering perspective as its dose-response
relationship has been extensively studied [8] and can be mo-
deled as a single-input-single-output linear parameter-vary-
ing system with input time delay and an output offset [9].

We propose that a stochastic approach to patient response
estimation could lead to better robustness in automatic drug
delivery methods. Particle filtering is a sequential Monte-
Carlo method which computes an approximation of the
probability distribution of the state of a partially observed
dynamical system through Bayesian inference [10], i.e., by
iteratively refining an initial distribution as new observations
become available. Particle filtering has found biomedical
engineering applications in signal processing and, recently,
it has been proposed as a tool to assist with differential diag-
nosis [11]. To the authors’ knowledge, its use in supporting
control decisions in drug delivery is novel. By including
any time-varying parameters among the states of the dose-
response model, we seek to estimate and track a patient’s
actual behaviour as it evolves through time. The statistical
features of the probability distribution are then used to
inform robust control decisions. The conditionally linear,
relatively low-order model of SNP dose-response renders the
implementation of a particle filter less computationally taxing
and is therefore well suited to investigating the potential of
the proposed approach.

The paper is structured as follows: Section II provides a
brief description of the problem and the control approach;
Section III describes and presents the results of a case study
simulation; Section IV discusses the results and outlines
possible directions for future work.

II. MATERIALS AND METHODS

A. The dose-response model

The dose-response for SNP administration is shown in Fig.
1 [9]. This translates into a state-space formulation for the
measured MAP output ymeas as a function of SNP infusion
rate u given by

ẋ = Ax(t)+Bu(t−T (t))+Lv(t)
ymeas = p0(t = 0)−Cx(t)+w(t), (1)

with

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

3539978-1-4577-1787-1/12/$26.00 ©2012 IEEE



e−sT

delay

1
τ2s+1

systemic circ.

1
τ1s+1

effect site

K

sensitivity
1

τ3s+1

pulmonary circ.

α

p0 w

u pdrop
–

y ymeas

Fig. 1. Model of patient response to SNP [9]. Notation: T is the pure
delay parameter; τ1 = 50s, τ2 = 30s, τ3 = 10s are the time constants of the
first-order LTI subsystems; α is the recirculation parameter; K is patient
sensitivity; p0 is the patient’s natural MAP; w is output measurement noise.
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where p0 is a patient’s natural MAP in the absence of SNP
infusion, and v(t) ∼ N(0,1) and w(t) ∼ N(0,2) are random
noise signals at the input and the output, respectively.

The a-priori-unknown and potentially time-varying para-
meters for the model are (rate of change per hour hr−1):

0.25 < K(t)< 9.5,
∣∣∣ dK

dt

∣∣∣< 3K(t)hr−1

0.25 < α(t)< 0.75,
∣∣∣ dα

dt

∣∣∣< 0.5hr−1 ∀t.

10 < T (t)< 50,
∣∣∣ dT

dt

∣∣∣< 40hr−1

(3)

Finally, the offset term p0(t), whose value can be mea-
sured prior to drug infusion (t = 0), is also considered to
be potentially time-varying for generality. A random, mainly
low-frequency behaviour is assumed. To this end,

p0(t) = p0(t = 0)+ pdist(t)

pdist(t) : Pdist(s)≤
1

s+0.01 .
(4)

Remark: The minimal assumptions adopted make this the
most general model formulation ever considered for control
design in this application.

It is evident that in light of the presence of a single
observation signal ymeas(t) and up to four time-varying
unknown parameters, the estimation of this dynamical system
is an underdetermined problem.

B. Closed-loop control

1) Performance requirements [12]:
• a settling time of 10min or less;
• a maximum overshoot of 10mmHg during transients;
• during steady state operation, MAP should be contained

within ±5mmHg of the desired set-point value;
• under no circumstances should the system display res-

onant (persistent oscillatory) or unstable behaviour or
cause MAP to drop below 60mmHg.

2) Controllers: The proposed feedback control architec-
ture is shown in Fig. 2. A bank of 5 candidate controllers
designed using the robust controller design technique of µ

synthesis ensures that a stable patient-controller pair capable
of delivering the required level of performance exists for all
values of the time-varying parameters. The controller design
process is described in detail in [4]. Table I summarizes the

correspondence between the controllers and the respective
subsets of the parameter uncertainty space.

3) Particle filtering: In order to estimate the model
parameters (particularly patient sensitivity K) so that the
correct controller can be placed in the feedback loop, the
estimation problem is recast as a nonlinear tracking problem
by including the uncertain parameters in the state, as shown
in (5) below. Since the system can be described as linear
(with “linear” states xl) conditionally on the “nonlinear”
states xn, it is possible to use a specialized form of particle
filtering called marginalized particle filtering [13].

The discrete-time form of the system with augmented state
vector using sampling time T s = 2s (one heart beat) is

xl(k+1) = Ad(x
n(k))xl(k)+Bdu(k−b T (xn(k))

Ts
c)+w(k)

xn(k+1) = f (xn(k))
y(k) = p0−Cd(x

n(k))xl(k)+ v(k),
(5)

where k = b t
Ts
c (b·c is the floor operator). The subscript d

indicates zero-order hold discretisation of (1); i.e.,
Ad = eATs , Bd = A−1 (Ad − I

)
B, Cd =C . (6)

The time update function of the nonlinear states f (xn) is

xn(k+1) =

[
K(k+1)
T (k+1)
α(k+1)

]
=

[
1 0 0
0 1 0
0 0 1

]
x(k)+χ(k), (7)

where χ(k) is sampled from an array of probability distribu-
tions which capture the likely trajectory of these parameters

χ ∼

[
U(−0.017K(k),0.017K(k))

U(−0.028,0.028)
U(−0.00028,0.00028)

]
(8)

Uniform distributions (U) are used to capture constraints
on the rate of change of parameters expressed in (3) while
making no assumptions on possible trends.

The aim of filtering is to obtain the posterior probability
density of the state conditioned on the observations up
until that time point, i.e. p(x(k)|Y (0 : k)), where Y (0 : k) ≡
{y(i)}k

i=0. An analytical solution to calculate this function
exists for linear Gaussian systems, resulting in the Kalman
filter approach. For more general cases, numerical methods
must be used. Particle filters are one such method, which
approximates the posterior probability with a finite number
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Fig. 2. Control architecture. Notation: r reference signal (desired
MAP value); C1,...,5 candidate controllers; u control signal (drug
infusion rate); p0 patient’s natural MAP; y output MAP; w measure-
ment noise; ymeas measured MAP; π = {π j} j=1,...,5 probability of
the estimated model parameters belonging to the uncertainty subset
for which robust controller C j has been designed.
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of samples (particles). Particles can be interpreted as realisa-
tions of the system to be estimated. At every time step, each
particle updates its state according to the dynamics of the
realisation it represents, and produces an estimated output.
This is compared with the actual observation and a weight for
the particle is generated. Particles with poorer weights have
a higher chance of being discarded during a resampling step
and reintroduced as a copy of a better performing realisation.
Over a number of iterations, particles cluster in the state
space in a way that approximates the posterior probability
density of the state. As the number of particles increases,
so does the accuracy of the approximation but also the
computational burden. Also, models with more states require
a larger number of particles to be approximated.

Marginalized particle filters exploit the fact that a subset
of the states can be treated as conditionally linear and can be
estimated using the optimal Kalman filter result (marginal-
isation), while the other (nonlinear) states are estimated by
the particle filter. A formal description of the method can
be found in [10]. Only an algorithmic description will be
given here. Due to the lower dimension of the numerical
approximation problem, marginalized particle filters have a
lower computational cost than a standard particle filter.

Marginalized Particle Filter algorithm
(a) Initialisation. State xi(0) for particle i = 1, . . . ,N is set as

xl(0)∼ (0,P(0)) xn(0)∼

 U(0.25,9.5)
U(10,50)

U(0.25,0.75)


with state estimate covariance matrix P(0) = 0, as xl(0) cer-
tainly equal 0 since the patient has received no drug for t < 0.
Also, learn p0 from observation y(0). Set k = 0.

(b) Weighting. For i = 1, . . . ,N compute the estimated output from
each particle as ŷi(k) = p0−Cd(x

n
i (k))x

l
i(k). Then, evaluate the

particles’ normalized importance weights q̃(k)

qi = p(y(k)|ŷi(k)) q̃i(k) =
qi(k)

∑
N
j=1 q j(k)

.

(c) Resampling. Resample N particles on the basis of the weights
obtained in Step (b) using a residual resampling algorithm [14].

(d) Time update. For each particle i = 1, . . . ,N
(i) Kalman filter correction of the linear state

estimate using the available observation y(k)
xl

i(k|k) = xl
i(k|k−1)+Hi(k)(y(k)− p0−Cd,i(k)xl

i(k|k−1)),
with
Hi(k) = Pi(k|k−1)Cd,i(k)S−1(k)
Si(k) =Cd,i(k)Pi(k|k−1)CT

d,i(k)+R
Pi(k|k) = Pi(k|k−1)−Hi(k)Cd,i(k)Pi(k|k−1),

where H is the Kalman gain, S is the innovation
covariance, and R is the variance of noise signal w.

(ii) Sample χ via (8) and update the nonlinear states via (7),
then calculate Ad,i(xn

i (k))(k) and Bd,i(xn
i (k))(k) using (6).

(iii) Time update of the marginalized states (xl
i(k + 1|k))

via (5) and the state estimate covariance matrix using
Pi(k + 1|k) = Ad,i(k)Pi(k|k)AT

d,i(k) + Q, where Q is the
covariance matrix of the state/input noise v.

(e) Iteration. Increase k→ k+1 and repeat over from Step (b).

4) Controller selection: Controller selection is carried
out by integrating the approximate probability distribution
which results from particle filtering. The number of particles
n j associated with each of the subsets listed in Table I
is proportional to the probability of controller j being the
correct one for insertion in the loop. In a weighted approach

TABLE I
LIST OF CONTROLLERS AND CORRESPONDING PARAMETER RANGES

Controller To suit K To suit α To suit delay
number j (mmHg/(ml/hr)) T (s)

1 0.25 – 0.71 0.25 – 0.75 0 – 50
2 0.71 – 1.63 0.25 – 0.75 0 – 50
3 1.63 – 3.48 0.25 – 0.75 0 – 50
4 3.48 – 6.72 0.25 – 0.75 0 – 50
5 6.72 – 9.50 0.25 – 0.75 0 – 50

to controller selection the drug infusion rate u can thus
be computed as a weighted sum of the control signals u j
generated by each controller

u = ∑
5
j=1 π ju j π j =

n j
N , (9)

where π j is the probability of the true parameters belonging
to subset j and N is the total number of particles.

III. SIMULATION EXAMPLE AND RESULTS

We present a simulation case study in which the proposed
approach is to control MAP in a virtual hypertensive patient
with a baseline of 120mmHg. The clinical goal (reference)
is to lower this first to 100mmHg and then to 80mmHg (at
t = 4000s). The total control period is 10000s. The control
task is challenging, with all patient parameters set to be time-
varying, including K. Large variations in the offset p0(t)
occur, with random fluctuations in the range ±20mmHg,
and step increases of 10mmHg (low-pass filtered) introduced
at times t = 3500s, t = 6100s and t = 9500s simulating
a worsening hypertensive condition. It is expected that in
such highly-varying conditions the system should be able to
maintain MAP within ±10mmHg of the required set point.

The simulation was implemented in Matlab and Simulink.
We evaluated the adherence of the controlled MAP to the
specifications and the quality of the filter estimate in terms
of particle scatter within the space of uncertain parameters.

The results are presented in Fig. 3. The system is able
to provide the required level of performance, with MAP
converging to the reference setpoints in under 10 minutes
(600s) and remaining within the allowed error range for
over 95% of the time; no persistent oscillations or dangerous
downward spikes were observed. Tracking of K was accurate,
resulting in correct controller allocation. Larger grey areas in
the density maps for T and α , however, indicate that under
the challenging simulation conditions chosen the values of
these two parameters could not be accurately resolved.

The processing time for the 10000s simulation was 45min
(2700s, approximately 3.7× faster than real time) on a
standard desktop computer (Intel R©CoreTM2 Quad CPU
3.00GHz) using 3000 particles. This number of particles was
deemed to be a reasonable compromise between accuracy in
the results and computational time. The same simulation did
not deliver noticeable improvements in the estimation results
when run using 5000 particles.

IV. DISCUSSIONS AND FUTURE WORK

We have introduced a new approach for the control of
highly uncertain, time-varying systems, and applied it to the
drug delivery example of controlled SNP administration. The
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Fig. 3. Results of simulation. The dashed lines in the Controlled
MAP plot show the ±10mmHg allowed error range. The plots of the
time-varying parameters K, α and T feature the real value (dashed
line) and the particle filter estimate (mean of the distribution, solid
line); the background of the plots are density maps showing the
distribution of the particles in the uncertainty space (lighter areas
indicate greater density). The numbers in the controller probability
plot indicate the controller with the greatest probability.

proposed architecture features multiple controllers and uses
the results of a particle filter for controller selection. Under
challenging simulation conditions, the approach delivered
promising results which are comparable with those obtained
in our earlier work with multiple-model adaptive control [12]
and arguably superior to those of past control architectures
which did not consider the challenge of a time-varying output
offset in their modeling. Future work will involve thorough
experimentation to confirm these positive results.

The fact that the computational burden associated with
particle filtering was compatible with real-time operation
without requiring special computational hardware, albeit for

the simple model chosen here, is also a notable positive
finding. We plan to examine other case studies, includ-
ing nonlinear and multiple-input-multiple-output systems, to
identify any limitations to the practical use of this technique
in addressing more complex problems.

Finally, we have shown that particle filtering can give
an indication as to what extent the estimation of an under-
determined system can be carried out successfully through
the resulting approximate probability distribution (in this
example, K was a sufficiently sensitive parameter to be
estimated, unlike T and α). While stability was not affected
here, from a general perspective the distribution may be used
to develop alternative supervisory methods which reduce the
risk of pairing the patient with a destabilizing controller
below an acceptable threshold (e.g., by locating a specific
percentile). We intend to investigate whether this concept
can contribute to the design of safer and more dependable
automatic drug delivery solutions.
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