
  

 

 

 

 
 

Abstract— In this paper, we investigate non-linear analysis 

of electroencephalogram (EEG) signals to examine changes in 

working memory load during the performance of a cognitive 

task with varying difficulty levels. EEG signals were recorded 

during an arithmetic task while the induced load was varying 

in seven levels from very easy to extremely difficult. The EEG 

signals were analyzed using three different non-linear/dynamic 

measures; namely:  correlation dimension, Hurst exponent and 

approximate entropy. Experimental results show that the 

values of the measures extracted from the delta frequency band 

of signals acquired from the frontal and occipital lobes of the 

brain vary in accordance with the task difficulty level induced. 

The values of the correlation dimension increased as the task 

difficulty increased, showing a rise in complexity of the EEG 

signals, while the values of the Hurst exponent and 

approximate entropy decreased as task difficulty increased, 

indicating more regularity and predictability in the signals.  

I. INTRODUCTION 

 RELIABLE and  noninvasive measurement of  working 

memory load that can be made continuously while 

performing a cognitive task would be very helpful for 

assessing cognitive function, crucial for the prevention of 

decision-making errors, and the development of adaptive 

user interfaces [1].  Such a measurement could help to 

maintain the efficiency and productivity in task completion, 

work performance, and  to avoid cognitive overload  [1],  

especially in critical/high mental load workplaces such as air 

traffic control, military operations, and fire/rescue 

commands. 

Electroencephalography  (EEG) is a noninvasive neuro-

imaging  technique  widely used  for measuring cognitive 

workload, which offers high temporal resolution, ease of 

use, and a comparably low cost [2].  EEG contains useful 

information about various physiological states of the brain 

and can be very efficient for understanding the complex 

dynamical behavior of the brain, if interpreted correctly [3].   
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Previously, a range of methods have been applied for 

measuring and classifying the memory load using EEG 

signal. These  methods  have used features such as power 

spectral density (PSD) or the averaged power and 

maximum/log power spectra [4-6],  sub-band entropy [7-8], 

and autoregressive model [9]. The application of non-linear 

methods in classifying mental tasks is more recent, and 

measures like correlation dimension (CD) [10-12], Hurst 

exponent (HE), approximate entropy (ApEn) and largest 

Lyapunov exponent (LLE) [13-14]  have been used to 

measure the complexity/irregularity of the underlying brain 

dynamics during the performance of some cognitive tasks 

compared with the rest condition. In [13],  it was 

demonstrated that the CD and ApEn/HE values 

decrease/increase when the participants are subject to sound 

or reflexologic stimulation compared with the normal state, 

showing a lesser degree of cognitive activity. Stated 

differently, in these studies the brain activity states; such as 

normal/rest and stimulated have been differentiated [10, 13-

14]. But to date, these measures have not been investigated 

in the analysis of the varying working memory load and the 

question whether these approaches could provide some 

information on the brain dynamics/behavior when 

performing a cognitive task with varying difficulty levels 

has not been addressed. 

For this study, we designed a cognitive task, more 

specifically an arithmetic task with seven levels of difficulty. 

To our knowledge the largest number of mental task load 

levels reported to date is five levels [15-16]. Our earlier 

work with three levels on a reading task also showed very 

promising results in characterizing the memory load  using 

linear features [17-18].  

We hypothesize that non-linear measures change 

continuously according to the varying difficulty levels of the 

cognitive task induced and therefore they can be used to 

quantify changes in memory loads during the performance 

of a cognitive task.  

II. NON-LINEAR MEASURES BACKGROUND 

In this study, we analyze the EEG signals during the 

performance of an arithmetic task using CD, HE, and ApEn.  

The measures are briefly explained below. Full details of 

their computation and the selection of their parameters can 

be found in [11, 13, 19]. 

Correlation dimension (CD): this is a measure of the 

complexity of a time series. For a given EEG segment; 

              , CD is a  function of two parameters; 

Characterization of Memory Load in an Arithmetic Task using  

Non-Linear Analysis of EEG Signals  

Pega Zarjam, Student Member, IEEE, Julien Epps, Member, IEEE, Nigel H. Lovell, Fellow, IEEE   

and Fang Chen  

A 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

3519978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

       , which represent the embedding dimension and 

radial space around each reference point, respectively. The 

CD is calculated using [11]:  

      
   

         

      
 

 (1) 

where        is a  function showing the probability that 

two arbitrary points of       in an  -dimensional space on 

the orbit are closer together than    Larger values of CD 

indicate more complexity in the signal.  
 

Approximate entropy (ApEn): this is a non-linear 

entropy estimator showing regularity or predictability of a 

given time series. ApEn of a given         is calculated using 

the following formula [19]: 
 

                              (2) 

Here,     
    = (number of X(j) such that               

 .               is the max distance between two given 

vectors of X(i), X(j). A                     parameter m 

                                         
           .  Practically, ApEn quantifies the 

likelihood of vectors that remain close (within r) on the next 

incremental comparison [20]. Larger values of ApEn 

indicate unpredictability or irregularity in the signal. 

 

 

 

 

 

 Hurst exponent (HE): it is a measure of self-similarity 

and long-term dependence and its degrees in a time-series.  

It is defined by [13]:                                
 

 
                                  

where T=N*   is the  duration of the sample data and 
 

 
  the 

corresponding value of the rescaled range. If        the 

time-series covers more distance than a random walk. Larger 

values of HE represent increase of randomness in the signal. 

III. METHODS 

A. Participants and Experiment Settings 

We studied six male participants, between the ages of 24-30 

years, engaged in postgraduate study. They were right-

handed and had normal or corrected to normal eyesight and 

gave written informed consent, in accordance with human 

research ethics guidelines. We designed an addition task 

with seven levels of difficulty, starting from one digit 

addition (very low) to multi-digit addition (extremely 

difficult).   

The task was displayed and controlled on a laptop PC 

with a viewing distance of 70 cm to the participant (subject). 

Each number was shown at the center of the screen in Arabic 

notation for three seconds. Subjects were asked to add the 

two presented numbers (shown sequentially), then were 

given two seconds (blank page) for retention followed by a 

multiple choice menu that presented the possible answers.  

The subjects were required to click on the correct answer 

using the mouse left button, with the minimum possible 

finger movement. There were 42 addition problems in total, 

across seven difficulty levels (6 per level), with each level 

lasting for two minutes. The difficulty level was manipulated  

TABLE I.  

TASK DIFFICULTY LEVEL DETAILS.   

 

by varying the n-digit numbers used and carries required to 

calculate the addition. The task detail is shown in Table I. 

The participants were asked to avoid any unnecessary 

physical movements to minimize the chance of muscle 

movement artifact (EMG) during the recording. Their hand 

was also placed in a fixed position, where they could still 

make finger movements in response to the correct answer on 

the mouse. Since the channels in the frontal lobes are 

sensitive to ocular artifact, participants were required to 

refrain from blinking as much as possible. The participants 

were given 30 second rests between each level, allowing 

them to relax, move or blink. 

B. EEG Recording 

The EEG signals were recorded from 32 channels mounted 

in an elastic cap, according to the extended international 10 - 

20 system using an Active Two acquisition system. The 

experiment was conducted under controlled conditions in an 

electrically isolated laboratory, with a minimum distance of 

five meters from power sources to the experiment desk and 

under natural illumination.  The EEG signals were passed 

through a band-pass filter with cut-off frequencies of 

           and were recorded at a           sampling 

rate. Each recording was visually inspected to choose the 

epochs which contained minimal EMG artifact. As a result, 

70 seconds (out of 90 seconds of each task level recording) 

for each subject was considered. However, the remaining 

portion of the recordings still included EOG and ECG 

artifacts. 

IV. ANALYSIS 

A. EEG Source Localization 

We used EEG source localization to estimate the localization 

and distribution of electrical events to select discriminatory 

channels, as in our previous work [21].    

B. Sub-Band Filtering  

We decomposed the EEG signals using the Discrete Wavelet 

Transform (DWT) into five levels (scales), according to the 

EEG frequency bands (0-4Hz delta, 4-8 Hz theta, 8-12 Hz 

alpha, 12-30 Hz beta, 30-100 Hz gamma). The selected 

mother wavelet was the Daubechies-4, which is localized 

and symmetric and has a smooth thresholding effect. 

C. Non-Linear Measure Application 

The EEG segments in a particular sub-band were denoted as 

                                                         

             
 

     
     

  
    

     
      

       (3) 

Task level Number of digits Example 

Very low (L1) 1&2 digit numbers 45+2 

Low (L2) 1&2 digit numbers with 1 carry 54+9 

Medium (L3) 2 digit numbers with 1 carry 67+42 

Medium-High (L4) 2 digit numbers with 2 carries 39+65 

High (L5) 2&3 digit numbers with 1 carry  377+32 

Very high (L6) 2&3 digit numbers with 2 carries 76+347 

Extremely high (L7) 3 digit numbers with 3 carries 983+748 
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               with the length of     seconds. Three 

non-linear measures; i.e. CD, ApEn, and HE were extracted 

from each EEG segment in different frequency sub-bands 

for each subject.  

V. RESULTS  

The source localization results showed that mainly the 

frontal and occipital regions of the brain were the most 

influenced regions, in all the task load levels across all six 

subjects. As the load level increased, not only were wider 

areas of these regions were affected, but also they were 

affected more deeply (shown by values closer to “1” in Fig. 

1).  The source maps of two load levels, the lowest (L1) and 

the most difficult levels (L7) for subject 1, are shown in Fig. 

1.  Therefore, for further analysis only EEG channels 

positioned in the frontal and occipital lobes were taken into 

account (i.e. the frontal channels Fp1, AF3, F7, F3, FC1, 

FC5 FC6, FC2, F4, F8, AF4, Fp2 and the occipital channels 

PO3, O1, Oz, O2, PO4).   

Fig. 2(a) shows the medians of the extracted CD measure 

from a frontal channel for subject 1 in the delta frequency 

band.  As seen, the median of the CD increases regularly as 

the task load increases. Fig. 2(b) displays the median of the 

extracted ApEn measure from the same channel, subject and 

frequency band.  Here, the median of the ApEn decreases 

consistently as the task load increases. The extracted HE 

values showed a similar trend to the ApEn. Therefore, their 

values tended to decline as the load level increases. 

The results for the selected channels across all the six 

subjects in different sub-bands are summarized in Table II. 

The study of these measures by frequency sub-band 

indicated that the delta sub-band exhibited more channels 

that consistently vary with the load level induced. In terms 

of the brain regions investigated, the frontal lobe also 

showed the highest number of channels contributed to the 

load level distinction.   

Due to the importance of the non-linear parameters’ 

values in determining the outcome, we also examined their 

different values to find the optima for the purpose of 

memory load characterization in this study. Thus, we 

calculated the CD for        and     .  According 

to the results, the higher the dimension  , the more distinct 

the load levels were. But varying parameter   did not affect 

the results much. For the ApEn measure, we varied     
              and         . The results showed 

that the lower the    value (closer to        ), the better the 

load levels were distanced but the choice of embedding 

dimension of 2 or 3 did not make any significant change.   

We also used a Kruskal-Wallis test to statistically measure 

the effectiveness of the measures in distinguishing seven 

load levels. The channels which revealed a small p-

value         ) for each extracted measure, across six 

subjects are shown in bold in Table II. 

 

Fig. 1. The source maps of two load levels for subject 1; (a) the lowest load 
(L1), and (b) the most difficult load (L7). Both load levels influence the 

similar regions more or less but the degree of activation increased as the load 

level increased. 

VI. DISCUSSION 

In this study, we investigated the use of three non-linear 

measures for characterizing memory load in an arithmetic 

task with seven levels of difficulty. The source localization 

results assisted us in focusing on the brain regions/channels 

of interest which were the most influenced by the task load, 

namely the frontal and occipital lobes. When the more 

difficult task load was induced these regions were affected 

more deeply and widely. This is in line with previous 

findings that the increasing workload is reflected by activity 

mostly in the frontal lobe of the brain [15, 22]. 

The extracted non-linear measures from the selected 

channels were found to be successful in task load 

discrimination and representing the functional dynamics of 

the brain when performing a task with different difficulty 

levels. The CD values tended to increase as the task load 

increased; indicating the brain activity 

dimension/complexity increases with the increase of 

cognitive activity load. This can be supported by previous 

mental task studies showing lower dimension when the brain 

goes to a passive state or a state of relaxation [10, 13]. A 

decreased value of ApEn with increased task load implies 

higher predictability and less irregularity in the brain 

activity. The decline in HE values as the task load increased 

demonstrates that random behavior of the signal decreases as 

the task load increases.  The last two measures may indicate 

the brain behaves in a more regular and focused manner 

when performing more difficult tasks.  

The frequency sub-band analysis showed that the delta is 

the most contributing sub-band, including more channels for 

the three measures in the memory load characterization. This 

was statistically confirmed by low p-values. 

 As future work, this method should be validated on a 

larger database and in more realistic environments. This 

includes collection of EEG signals with increased subject 

numbers, running different cognitive tasks with a focus on 

cognitive overload, using a classification method for 

discriminating the task loads.
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Fig. 2. (a) Medians of the CD (         ) extracted from segmented 
EEG data in the delta band from a frontal channel (Fp1) of subject 1.  (b) 

Medians of the ApEn (             ) extracted for the same channel, 
freq. band, and subject. On each box, the red mark is the median; the edges 

of the box are the 25th and the 75th percentiles. 
 

TABLE II. 

SELECTED CHANNELS FOR EACH EXTRACTED NON-LINEAR MEASURE  WHOSE 

MEDIAN SHOWED A CONSISTENT TREND ACCORDING TO TASK LOAD 

VARIATION, IN DIFFERENT FREQUENCY SUB-BANDS, ACROSS ALL SIX 

SUBJECTS. CHANNELS IN BOLD DENOTE CASES WHERE A KRUSKAL-WALLIS 

TEST GAVE P<0.01 FOR ALL SIX SUBJECTS. 
 

Freq.  

sub-band 

Measure Region of the brain/Channels 

 
 

 

Delta 

CD Frontal: Fp1, AF3, FC1, F3, FC5, FC2, F4, F8, 
AF4, Fp2 - Occipital: O1, Oz 

ApEn 

 
HE 

Frontal: Fp1, AF3, F7, F3, FC5, FC6, FC2, F4, 

F8, AF4, Fp2 -  Occipital: O1, Oz, PO4 
 

Frontal: Fp1, AF3, FC1, FC6, F4, F8, AF4, 
Fp2 -  Occipital: O1, PO4 

 

 
Theta 

CD Frontal: Fp1, AF3, FC6, FC2 - Occipital: 

O1,Oz 
ApEn Frontal: Fp1, AF3, FC1, F3, F8 - Occipital: O1, 

O2, PO4  

HE Frontal: Fp1, AF3, FC1, FC2, F8 - Occipital: 

PO3,Oz, O2, PO4 

 

Alpha 

CD - 

ApEn Frontal: Fp1, AF3, F7, FC5, AF4, Fp2 - 

Occipital: PO3, O2 

HE Frontal: FC1, FC6, F8 - Occipital: Oz 

 

Beta 

CD  - 

ApEn Frontal: Fp1, AF3, FC6, Fp2 - Occipital: O1, 
Oz 

HE Frontal: Fp1, AF3, FC2, Fp2 - Occipital: PO3 
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