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Abstract— Hypoglycemia is the most common but highly 
feared side effect of the insulin therapy for patients with Type 1 
Diabetes Mellitus (T1DM). Severe episodes of hypoglycemia 
can lead to unconsciousness, coma, and even death. The variety 
of hypoglycemic symptoms arises from the activation of the 
autonomous central nervous system and from reduced cerebral 
glucose consumption. In this study, electroencephalography 
(EEG) signals from five T1DM patients during an overnight 
clamp study were measured and analyzed. By applying a 
method of feature extraction using Fast Fourier Transform 
(FFT) and classification using neural networks, we establish 
that hypoglycemia can be detected non-invasively using EEG 
signals from only two channels. This paper demonstrates that a 
significant advantage can be achieved by implementing 
adaptive training. By adapting the classifier to a previously 
unseen person, the classification results can be improved from 
60% sensitivity and 54% specificity to 75% sensitivity and 67% 
specificity.  

 

I. INTRODUCTION 

Type 1 Diabetes Mellitus (T1DM) is a form of diabetes 
which is caused by the loss of insulin-producing beta cells in 
the pancreas leading to insulin deficiency. It has been 
reported that intensive insulin therapy is the most efficient 
treatment for T1DM patients which can delay the onset and 
reduce the risk of acute diabetic complications like 
retinopathy, nephropathy and neuropathy [1]. However, it 
increases, by three times, the incidence of hypoglycemia 
among patients with T1DM over conventional therapy. 
Hypoglycemia is the medical term for the state produced by 
an abnormally low level of blood glucose. This is considered 
as the most common but highly severe complication for 
patients with T1DM and a limiting factor of the intensive 
insulin therapy. 

Hypoglycemia can produce a variety of symptoms, from 
mild to severe episodes [2, 3]. Mild hypoglycemia causes 
sweating, nervousness, heart plumping, confusion, anxiety, 
etc. It can be alleviated by eating or drinking glucose-rich 
food. If left untreated, hypoglycemia can become severe and 
leads to seizures, coma, and even death. One of the most 
dangerous effects of hypoglycemia is hypoglycemia 
unawareness. This is caused by frequent episodes of 
hypoglycemia which can lead to changes in the response of 
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patients’ bodies. In unawareness situations, patients’ bodies 
do not release counter-regulatory hormones which are the 
origin of early warning symptoms for patients like shaking, 
sweating, hunger, anxiety, etc. Because of the lack of 
warning, patients cannot realize the occurrence of 
hypoglycemia until it becomes severe and could lead to fatal 
damage. Nocturnal hypoglycemia is also especially 
dangerous because sleep reduces and obscures symptoms, so 
that an initially mild episode may become severe. It was 
reported previously that almost 50% of all episodes of severe 
hypoglycemia occur at night during sleep [4]. Because of its 
severity, intensive research has been devoted to the 
development of systems that can detect the onset of 
hypoglycemic episodes, and then give an alarm to provide 
enough time for patients and carers to take action.    

The human brain depends on a continual supply of 
glucose and is vulnerable to any glucose deprivation. Since 
the electroencephalogram (EEG) is directly related to the 
metabolism of brain cells, hypoglycemia is shown to cause 
early changes in EEG that can be detected non-invasively. 
Previous studies have demonstrated several evidences of 
changes in EEG signals due to hypoglycemia [5-9].  In recent 
papers, we proposed methods of detecting hypoglycemic 
episodes using Fast Fourier Transform (FFT) and neural 
network [10, 11]. Those studies lead to acceptable results 
which show the potential ability to detect the onset of 
hypoglycemia from EEG signals. With the aim of developing 
a system that can be applied into real clinical situations, the 
study needs to be expanded and improved further.   

The main objective of this paper is to demonstrate that by 
applying a properly adaptive strategy of classification, 
hypoglycemia can be detected efficiently using only two 
EEG channels. Using data of 5 T1DM children from a 
glucose clamp study, different EEG parameters are extracted 
and analyzed to find important features that significantly 
change under hypoglycemia conditions. The features from 
two EEG channels are employed as inputs for a neural 
network to classify patients' conditions into two states: 
hypoglycemia and non-hypoglycemia. The neural network is 
trained and tested adaptively in order to allow the classifier to 
customize itself to new EEG patterns from new individual 
users. Section II provides an overview of the methodology 
used for detection of hypoglycemia using EEG signals. In 
Section III, the development and results of the study will be 
mentioned and discussed. Conclusions for this study are 
drawn in Section IV.  
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II. METHOD 

A. Study 
EEG signals were acquired from five adolescent patients 

with T1DM (between the ages of 12 and 18 years) who 
volunteered for the overnight hypoglycemia study at the 
Princess Margaret Hospital for Children in Perth, Australia. 
During the study, signals were continuously recorded and 
stored using Compumedics system with the sampling rate of 
128 Hz. Accordingly to the International 10/20 system, 4 
EEG electrodes (or channels) were positioned at 4 different 
brain positions, O1 and O2 in the occipital lobe; C3 and C4 
in the central lobe, referenced to A1 with left-side positions 
and A2 with right-side position. There were also two 
electrodes placed on patients’ chins to measure the 
electromyogram (EMG) signals and two electrodes placed 
near patients’ eyes to measure the electrooculogram (EOG) 
signals. During the study, the actual blood glucose levels 
(BGLs) from patients were also routinely collected to be used 
as reference. BGLs were acquired using Yellow Spring 
Instruments with the general sampling period of 5 minutes. 
Data were collected with the approval of the Women’s and 
Children’s Health Service, Department of Health, 
Government of Western Australia, and with informed 
consent. 

B.   Feature extraction 
After finalizing the signal acquiring step, several steps of 

signal processing are carried out in EEGLAB [15]. First, at 
each blood-sampling point, an epoch of 2 minutes is selected. 
Each epoch is labeled as hypoglycemia or non-hypoglycemia 
according to the corresponding BGL. Epochs which 
correspond with BGL lower than 3.3mmol/l are defined as 
hypoglycemia. Otherwise, they are labeled as non-
hypoglycemia. An IIR highpass filter with a cut-off 
frequency of 2Hz is applied to each epoch to get rid of low 
frequency artifacts. A notch filter at 50Hz is also applied to 
remove power noise. A visually artifact-rejecting method is 
used to exclude EEG segments contaminated with artifacts. 
Segments containing significant artifacts are discarded, based 
on EMG and EOG signals. Finally, from each patient, 2 sets 
of 40-second epochs (which are hypoglycemia and non-
hypoglycemia sets) are taken.  

Non-artifact 40-second EEG epochs are segmented into 
5-second non-overlapping segments. By using FFT, each 
segment is transformed into the frequency domain which 
results in the power spectrum ( )iP f , with frequency 
resolution of 0.2 Hz. The power spectrum is then subdivided 
into 3 frequency bands: theta (θ: 3.4-7.8Hz), alpha (α : 8-13 
Hz) and beta (β: 13.2-30Hz). From the power spectrum of 
each frequency band, different EEG parameters are estimated 
as follows: 

Power (P):  The power level within each frequency band 
has been shown as a common feature in EEG research. In this 
paper, the power level within each frequency band is 
estimated from the power spectrum ( )iP f by using a 
numerical integration technique (the trapezoidal rule).  

Centroid Frequency (CF): This feature can be referred to 
the center of gravity of the spectrum within each band. It is 

estimated as the frequency which subdivides the area, under 
the spectral curve, into identical parts. 
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As a result, a total set of 24 EEG features (2 different 
kinds of feature x 4 channels x 3 frequency bands) are 
estimated for each epoch.  

The Student’s t-test is then applied to each feature to 
estimate the significance of differences between 
hypoglycemia and non-hypoglycemia conditions. Probability 
values (p-value) less than 0.05 are considered to be 
significant. The statistically significant features will be used 
as inputs for the classification. 

C.  Neural network 
Artificial neural networks have been employed popularly 

in biomedical area as a powerful tool of classification and 
pattern recognition. It has been recognized that neural 
networks are useful for classifying complex situations. It can 
effectively model non-linear relationships between inputs and 
outputs.  

In this study, a neural network with feed-forward multi-
layer structure is developed and employed as a classification 
unit. This network consists of one input layer which includes 
the features extracted from EEG signals, one hidden layer 
and one output layer. The structure of the neural network is 
shown in Fig. 1. The input-output relationship of the neural 
network can be written as follows: 
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where , 1, 2,..., ; 1, 2,...,= =ijw i S j R is the weight of the link 

between i-th hidden node and the j-th input; iv  is the weight 
of the link between i-th hidden node and the output; b1i, b2 
are the biases for the input layer and hidden layer 
respectively; S is the number of hidden nodes; R is the 
number of inputs; tan sig is the hyperbolic tangent sigmoid 
transfer function of hidden layer: 
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The overall data are grouped into a training set, a 
validation set and a testing set. The developed neural network 
is trained by using the training set with a stopping procedure 
determined by the validation set. This neural network is 
trained by the Levenberg-Marquardt (LM) algorithm which is 
an effective and popular training algorithm. In brief, the LM 
algorithm estimates the second directional derivative of the 
error function, in order to direct the training process to a local 
minimum and find optimized network parameters 
(including 1 2; ; ;ij i iw b v b ). The number of hidden nodes is 
selected as the one which give the best classification 
performances.  
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Figure 1.  Neural network structure 

After determining the final structure and parameters for 
the neural network, the Receiver Operating Characteristic 
(ROC) curve will be found based on the combined training 
and validation dataset. By definition, a ROC curve presents 
the tradeoff between the true positive rate versus false 
positive rate (equivalently, sensitivity versus 1–specificity) 
for different thresholds of the classifier output. In this paper, 
we use that characteristic to choose the output threshold 
which is most suitable to the application of hypoglycemia 
detection. The area under the ROC curve (AuR) is also 
estimated as a measure of classification performance. The 
higher the AuR, the better the classification. A random 
classification gives an AuR of 0.5, while an ideal 
classification gives an AuR of 1.  

Finally, based on the derived structure as well as the 
output threshold of neural network, the test set will be 
applied to test the performance of the developed neural 
network. These performances are determined in terms of 
sensitivity and specificity of the classification results: 

       ;TP TNSensitivity Specificity
TP FN TN FP

= =
+ +

   (4) 

where True Positive (TP) is the number of hypoglycemic 
episodes which are correctly classified as hypoglycemia; 
True Negative (TN) is the number of non-hypoglycemic 
episodes which are correctly classified as non-hypoglycemia; 
False Positive (FP) is the number of non-hypoglycemic 
episodes which are wrongly classified as hypoglycemia; 
False Negative (FN) is the number of hypoglycemic episodes 
which are wrongly classified as non-hypoglycemia. 

It has been noted in our previous work that EEG patterns 
significantly vary from person to person, which leads to a 
difficulty in generalizing the system to a new user. To 
overcome this, in this paper, we implement a strategy of 
training neural network adaptively, which allows the neural 
network to adapt itself to each new individual user. The 
system is initially trained and validated with data from four 
patients. The resulting neural network is then further trained 
with a small set of data taken from the previously unseen 
patient. The final trained neural network is then tested with 
the major part of data from the same patient.   

III. RESULTS 

The actual BGL profiles of five patients which were 
collected by the Yellow Spring Instruments during the study 
are shown in Fig. 2. The reference (Ref line in Fig. 2) is set at 
3.3mmol/l which is used as the BGL threshold of 
hypoglycemia.  

EEG responses from all five patients show significant 
changes during the hypoglycemia state against the non-
hypoglycemia state. There are some slight changes in alpha 
power and theta power at channels O1 and O2 (p ≤ 0.05). 
The beta power levels at all channels except C3 do not 
change significantly between non-hypoglycemia and 
hypoglycemia states. Because these responses are not 
consistent in all patients, we conclude that they are caused by 
body movements as well as changes in sleep stages of 
patients during night. The study shows that the centroid alpha 
frequency is the most significant feature. Under 
hypoglycemia conditions, the centroid alpha frequency of 5 
patients reduces significantly at all four channels (p ≤ 
0.0001). The results also show an increase in centroid theta 
frequency at all channels (p = 0.026 at O2, 0.007 at C3 and 
0.006 at C4). There is no significant change in the centroid 
beta frequency across all four channels (p = 0.037 at channel 
C3 and p > 0.05 at others). These results demonstrate that 
during the hypoglycemia onset, there is a power shift to the 
border area between alpha band and theta band in the power 
spectra of EEG signals.  

The statistical results also indicate similarities between 
channels O1 and O2 in the occipital lobe; C3 and C4 in the 
central lobe. As a result, we establish there are no significant 
difference in responses between channels in left and right 
brain hemispheres. Therefore, to evaluate classification 
performance, we use data from two channels C3 and O2 
which are in two different sides and area of the brain. 

Based on these statistical results, centroid theta 
frequencies and centroid alpha frequencies from channels C3 
and O2 are selected as inputs of classification. A neural 
network is developed with 4 input nodes (2 features × 2 
channels), 1 output node and S hidden nodes. The desired 
output is set at 1 in case of hypoglycemia and −1 in case of 
non-hypoglycemia. S is varied from 4 to 10 to select the one 
that gives the best performance. As a result, in our 
application, S = 8 gives a best classification performance and 
we use it for our study. 

 

 

 

 

 
 

 

 

Figure 2.  Actual blood glucose level profiles in 5 T1DM children 
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The overall data set is separated into a training set, a 
validation set and a testing set. The training set and validation 
set is formed by randomly dividing data from 4 patients. As a 
result, the training set consists of 127 episodes which include 
54 episodes of hypoglycemia. The validation set consists of 
63 episodes which include 28 episodes of hypoglycemia. 
After being trained, the neural network will be tested by data 
from one previously unseen patient. The data set from the 
testing patient consists of 44 episodes which include 20 
episodes of hypoglycemia.  

The classification results are showed in Table I. The 
corresponding AuR for the combined training/validation 
dataset is 0.78. The curve is plotted in Fig. 3. With this ROC 
curve, the threshold to distinguish between the hypoglycemia 
and non-hypoglycemia states is selected at the point 
producing sensitivity higher than 75%. At that point, the 
combined training and validation results of 76% sensitivity 
and 67% specificity are gained. These results indicate a 
potential ability of neural network to detect hypoglycemia 
from non-invasive EEG signals. To show how well these 
results generalize, the data from an entirely new patient are 
applied to neural network. This testing leads to results of 
60% sensitivity and 54% specificity which are reasonable 
due to the patient-to-patient variability of EEG signals. In 
order to overcome this variability, we carry out a further 
training process. 20 non-hypoglycemia data points from the 
fifth new patient, which are not included in the testing set, are 
added to the training set to re-train the previously achieved 
neural network. After that, the testing set is then applied to 
this re-trained neural network. The adaptive training 
increases the classification results for the fifth patient up to 
75% sensitivity and 67% specificity.    

TABLE I.  CLASSIFICATION RESULTS 

Data set Sensitivity Specificity 

Training 76% 67% 

Test 60% 54% 

Adaptive Training 76% 68% 

Re_test 75% 67% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  ROC plot 

IV. CONCLUSION 
In this paper, a method for early detection of 

hypoglycemia episodes from EEG signals is proposed. 
Statistical results show that theta and alpha centroid 
frequencies are significant to be used as inputs of detecting 
system. A neural network algorithm is developed for the 
purpose of classification. In order to increase the 
generalization of the developed neural network, an adaptive 
training is employed. This paper demonstrates that by 
adapting the classifier to a small data set from an entirely 
unseen patient, the classification performance can be 
enhanced markedly from 60% sensitivity and 54% specificity 
to 75% sensitivity and 67% specificity. The results imply that 
by applying partly individual training, the hypoglycemia 
detecting system which uses only 2 EEG channels can 
perform efficiently.  
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