
  

 

Abstract— Blinks are one of the main sources of distortion in 

electroencephalographic (EEG) data. Discarding blink-

contaminated segments of EEG data would result in 

considerable information loss when interpreting and analyzing 

data. This study presents a simple method of blink filtering 

using a Savitzky-Golay (SG) smoothing filter and compares it to 

Independent Component Analysis (ICA), a widely accepted 

method of blink removal. The SG-based blink filtering method 

arose from the need for blink removal in EEG systems with a 

low number of channels and limited processing power, 

specifically reading from the forehead location where the blink 

disturbance is severe. Real and simulated data were 

investigated with respect to the method’s performance. Using 

correlation and mutual information to measure performance, 

the results reveal that the SG-based method can effectively 

remove blink artifacts and produces results comparable to those 

obtained using ICA. 

I. INTRODUCTION 

Blinks are a major problem in the study of brain 
potentials. The electrical potentials resulting from eye blinks 
can be much larger than the underlying EEG and can 
propagate across the scalp, distorting brain signals of interest 
[1]. A simple solution is to discard any portions of 
contaminated data; however this could result in substantial 
data loss and biased data samples [2]. Another approach is to 
restrict the subjects from blinking, but this limits the 
experiment’s design and can impact the cognitive processes 
involved [1]. This leaves filtering, removing the artifact yet 
leaving the underlying EEG, as the most desirable option.  

Single channel EEG systems are becoming increasingly 
popular for applications where real-time processing, usability 
and low computational cost are of high importance. Some 
applications of single-channel EEG include brain-computer 
interfaces [3], sleep scoring programs [4], and Alzheimer’s 
disease recognition [5]. Artifacts appear differently in 
different channels of EEG; therefore artifact removal in a 
single-channel of EEG has the advantage that the artifacts 
can be detected and processed specifically for that channel.  

Only a few methods have been proposed for blink 
removal in single channel EEG, such as Hilbert-Huang 
reconstruction [6] and Singular Spectrum Analysis [7]. 
However these techniques can needlessly alter the clean EEG 
between ocular artifacts and are more computationally 
intensive than the method proposed.  
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The proposed method of blink filtering requires only a 
single channel of EEG. Once a blink has been detected, a 
smoothing filter is applied to only the section of EEG with 
the blink. A smoothing filter lets low frequency components 
pass and reduces the high frequency components. Since a 
blink is composed largely of low frequencies, when a 
smoothing filter is used on EEG data containing a blink, it 
filters out the higher frequencies to leave us with a blink 
waveform. This blink waveform can then be subtracted from 
the original data, removing the estimated blink disturbance 
yet leaving the higher frequency information intact.  

The smoothing filter used in this study is the Savitzky-
Golay (SG) filter [8]. It was originally developed for noise 
reduction in the field of analytical chemistry but has become 
a widely used method to improve the signal-to-noise ratio of 
many types of signals [9,10,11] The filter essentially 
performs a local polynomial regression on a series of values 
to determine the smoothed value for each point. This method 
is advantageous as it tends to preserve data features such as 
peak height and width which are usually affected by other 
adjacent averaging techniques, and should therefore 
efficiently model a blink artifact in EEG. 

Independent Component Analysis (ICA) is a widely used 
method of artifact removal in electrophysiological signal 
processing [12]. ICA requires data from multiple channels of 
EEG, and is based on the assumption that recorded EEG 
signals are linear mixtures of unknown independent 
components within the brain [13]. The goal of ICA is to find 
a linear transformation of the measured sensor signals such 
that the resulting source components are as independent as 
possible. After the source components’ calculation, a clean 
EEG signal can be obtained by eliminating the components 
which correspond to artifacts.  

In our study we used both simulated and real data to 
evaluate the performance of the SG-based method. We 
filtered simulated blink-contaminated EEG using the SG-
based method as well as ICA and compared the results using 
the measure of correlation.  We then filtered real blink-
contaminated EEG and compared the results to ICA using 
cross-correlation and mutual information with the 
electrooculogram (EOG).  

II. METHODS 

A. Data Processing 

Graz data set 2a was downloaded from the 2008 BCI 
data competition [14]. There were 9 subjects with 
approximately 44 minutes of data each, during which the 
subjects were performing a motor imagery task. Twenty two 
Ag/AgCl electrodes and 3 EOG channels were recorded 
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Figure 1. A 25 s segment of simulated blink-contaminated EEG. A subset 

of three channels out of 22 are displayed. 

[15]. The left mastoid was used as reference and the right 
mastoid as ground. The signals were sampled at 250Hz and 
bandpass-filtered between 0.5 and 100Hz. An additional 
50Hz notch filter was used to suppress line noise. 

EEGLAB [16] was used to perform our analysis. 
Portions of data containing artifacts other than blinks were 
removed by hand. Blink artifacts were identified and their 
peak marked manually. A script was used to adjust the 
marked blink latency to ensure it marked the exact peak. The 
blink events were randomly divided into a training set and a 
testing set.  

The Fz channel was chosen for filtering since this study 
demonstrates single channel blink removal and the EEG 
from the frontal locations are severely contaminated by blink 
artifacts. To remove a blink using the SG-based method, a 
time period of 0.16 seconds to the left (40 samples) and 0.84 
seconds (210 samples) to the right of each blink peak was 
identified as a ‘detected blink’. This time period was chosen 
based on time for an averaged blink disturbance (330 blinks 
at the Fz location from the training set averaged together) to 
return back to baseline on either side of the peak. This could 
be implemented as a simple detection algorithm by setting an 
upper threshold for EEG (with any non-EOG artifacts 
removed) and finding the maximum point for each 
continuous set of points above this threshold, then stepping 
left 0.16 seconds and right 0.84 seconds. SG filtering was 
then performed only on the detected blink segment. The SG 
filtered portion was subtracted from the original noisy 
portion to leave a blink-removed EEG signal. The SG 
filtering parameters were chosen based on filtering an 
averaged blink artifact: the same average blink from above 
was added to random portions of uncontaminated EEG from 
various subjects. SG filtering parameters window length 41 
and degree 3 produced filtered data with the highest average 
correlation to the original uncontaminated EEG. 

ICA was performed using the extended infomax ICA 
algorithm [13] included in the EEGLAB software. Two-
dimensional scalp component maps and ICA component 
spectra were plotted and the component representing the 
blink was rejected (the component frontally located with a 
smooth exponentially decreasing spectrum). The result of the 
ICA filtering on the Fz channel was saved to compare to the 
SG-based method. 

B. Evaluating Performance 

Simulated Data: With simulated data, the ‘target’ data is 

known and the accuracy of correction can be estimated more 

precisely than with real data.  To create simulated blink-

contaminated data, 22 channels of EEG were taken from a 

random subject (Subject 1) and artifacts, including blinks, 

were removed manually. An average blink was created by 

averaging all the blinks from Fz from the test data set. The 

average blink was varied in height and width, consistent with 

ranges observed in the real data. Blinks were also inverted to 

take into account inverted blinks observed in past 

experience. The latencies of the blinks were determined 

using a range of blink rates for normal subjects found by 

[17].  The blink activations were added to the 22 channels 

using weights for the blink component from ICA that had 

been run on a separate subject’s data (Subject 5). “Fig. 1” 

shows a 25 second segment of the resulting simulated blink-

contaminated data. In total, 23 minutes of simulated data 

containing 195 blinks were constructed. ICA was then run on 

all 22 channels of data and the SG-based method was run on 

the Fz channel. The correlation coefficient for the continuous 

target data and filtered data for the Fz channel was compared 

for both methods. 

 
 Real Data: With empirical data the true EEG isn’t 

known, therefore an indirect approach must be used to 
measure the accuracy of blink-removal. In theory, the 
similarity between the blink contaminated EEG and the EOG 
should be reduced after blink filtering. Two metrics were 
used to explore the reduction of similarity with the EOG: a 
cross-correlation metric and mutual information. Epochs 
containing the main blink disturbance (0.16 seconds 
preceding the blink peak and 0.84 seconds following it) were 
extracted and the metrics were calculated on these epochs. 
These metrics were calculated for ICA filtered data as well 
as the SG-based method so that we have a reference point for 
comparison.  

Based on a method developed by [18] during their 
comparison of EOG artifact rejection techniques the 
following cross correlation metric measuring the efficiency 
of blink filtering was used: 

P = max{d}(CCEEG,EOG(d))max{d}(CFEEG,EOG(d))    (1) 

Where CCEEG,EOG(d) is the normalized cross-correlation 
sequence between the blink-contaminated EEG and EOG at 
delay d and CFEEG,EOG(d) is the normalized cross-correlation 
sequence between the blink filtered EEG and the EOG at 
delay d.  

Mutual information, a measure of the dependence 
between two variables, was the other metric used. While 
second order statistics, such as covariance and correlation, 
measure the linear dependence, mutual information is a more 
general measure for estimating not only linear dependencies, 
but also dependencies of higher order [19].  Furthermore 
correlation requires the variables to be Gaussian if their 
independence is to be tested, whereas mutual information 
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Figure 2.  Filtering results on a 2 second segment of simulated blink-contaminated data at the Fz location. Shown is the simulated blink-contaminated 

EEG, target EEG and filtered EEG (SG-based method and ICA, respectively). 

 

 

Figure 3. Average performance from (1) for each subject. A number close 

to one indicates that the filtered EEG has a largely reduced correlation 

with the EOG. The bars on each data point indicate standard error. 

makes no assumption about the distribution. A blink carries 
most of the mutual information between the EEG and the 
EOG. Therefore, we assume that after filtering the blink 
from the EEG there should be less information shared with 
the EOG than there is between the original raw data and the 
EOG [20]. 

III. RESULTS 

A. Simulated Data 

The results of filtering the simulated data at the Fz 
location are exemplified in “Fig. 2”. By visual inspection, it 
can be seen that the SG-based method produces filtered EEG 
very similar to the target EEG. The SG-based method 
produced filtered data with a correlation coefficient of 0.95 
(p<0.001) to the target data and ICA produced filtered data 
with a correlation coefficient of 0.87 (p<0.001). The root 
mean square (RMS) value was 9.82uV for the target data at 
Fz and 7.85uV for the blink activation that was added (a 
lower RMS value since the data is zero everywhere except 
where a blink occurs). The signal to noise ratio of the 
simulated blink-contaminated data at the Fz channel was 
originally 1.94 dB. After filtering, the SG-based method 
improved the signal-to-noise ratio (SNR) of the Fz channel 
to 10.41dB (with a RMS error of 2.96uV from the target 
data), whereas the ICA method improved it to 6.15dB (with 
a RMS error of 4.84uV from the target data).  

B. Real Data 

The performance measure, P, of filtering the real data at 
Fz (measured by (1)) and standard error is shown in “Fig. 3”. 
A number close to one indicates that the filtered EEG has a 
largely reduced correlation with the EOG. The SG-based 
method presented significantly higher performance than ICA, 
with an average across subjects of 0.72 compared to ICA 
which had an average performance of 0.52. 

The mutual information between raw blink-contaminated 
EEG at Fz and EOG was compared to the mutual 
information between the filtered data and EOG. “Fig. 4” 

shows the average mutual information with the EOG for each 
subject including standard error bars. The SG-based method 
shows a slightly larger reduction in information shared with 
the EOG. 

As is usually the case when evaluating filtering on real 
data, these metrics are not without flaw; similar to how EEG 
can be contaminated by ocular artifacts, the EOG can be 
contaminated by brain activity. Therefore having filtered 
EEG with no correlation to the EOG after filtering should 
not indicate high performance, but with the performance 
metric ‘P’ it would. Similarly, a filtered EEG signal sharing 
zero mutual information with the EOG would not be 
properly filtered. However, these metrics are meant to be 
supplemental evaluations to the preceding section of 
simulated data analysis in this paper. 

IV. CONCLUSION 

Using simulated blink artifacts, the SG-based method can 
be seen to produce filtered data that is very similar to the 
target EEG. Compared to ICA, it was shown that the SG-
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Figure 4. Average mutual information with EOG. The bars on each data 

point indicate standard error. A number close to zero indicates very little 

information is shared with the EOG. 

based method produces data that is more highly correlated to 
the target data, with a higher SNR. When filtering real data, 
the SG-based method demonstrates similar, if not higher, 
performance removing EOG compared to ICA.  

The SG-based method of filtering is advantageous in a 
number of ways. The filter can be applied selectively to 
sections of data where a blink has been detected and leave 
the rest of the data intact. Since the method uses a simple 
smoothing filter, it is computationally efficient and can be 
performed quickly compared to many other methods of noise 
removal. The method can be easily implemented in real-time 
and only requires a single channel of data. ICA requires data 
from multiple channels and is more difficult to learn to 
perform. It can also be difficult to automate ICA; depending 
on the method used, an operator may have to examine the 
components obtained by ICA analysis and decide which 
component represents the artifact that must be removed. 
Furthermore, the computing of the components for ICA can 
take a considerable amount of time.  

There are, however, certain drawbacks of the SG-based 
method relative to ICA. For example, ICA is able to remove 
more subtle or difficult to detect blink components from 
channels located further from the forehead. There is also the 
argument that regressing out EOG activity in the time or 
frequency domain inevitably involves subtracting a portion 
of the relevant EEG [21]. 

In this paper we have only investigated the filter’s effect 
on eye blinks, however further work could be done by 
expanding the test pool to include other eye movements as 
well. During pre-processing of eye blink data it was noted 
that the high-pass filter cut off frequency strongly affects the 
shape of the blink. Investigation could also be carried out 
into how pre-processing affects the blink characteristics and 
the changes necessary in the filtering parameters. Finally, 
since the SG-based method proposes subtracting data which 
has been smoothed, further work could be done to 
investigate any information loss in the lower frequencies. 
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