
Evaluation Study of Compressed Sensing for Neural Spike Recordings

Christoph Bulach, Ulrich Bihr and Maurits Ortmanns

Abstract— In this paper, an evaluation study of compressed
sensing (CS) for neural action potential (spike) signals in
MATLAB is presented. State-of-the-art neural recorders use
100 or more parallel channels to measure neural activity
resulting in a data rate of 16 – 20 Mbit/s. Since a low-
power design is required for an implanted neural recorder,
it seems advantageous to compress the neural data prior to
the wireless transmission. The continuous neural spike signals
are compressed and transmitted to facilitate the possibility of
an unrestricted data analysis at the receiver. Synthesized and
recorded neural data sets are used to test the performance of
CS. The 6-level Daubechies-8 wavelet decomposition matrix and
two learned dictionary matrices are utilized as dictionaries for
CS. The compression results are evaluated with the spike sorting
program OSort. CS is shown to work for the compression of
low-noise synthesized neural spike signals with a compression
rate of 2.05, but cannot be recommended for the compression
of neural spike signals in general.

I. INTRODUCTION

Implanted neural recorders are widely used to monitor
neural activity in the human brain. Due to the heat sensitivity
of brain tissue, the power dissipation of the recording chip
should be around 10 mW [1] and thus, a power efficient
design is necessary. Neural recorders use a small electrode
array of thin needles [2] to measure 100 or more extracellular
signals from multiple neurons in parallel. These extracellular
recordings can be decomposed into local field potential (LFP)
and the spike signal. The LFP is concentrated between 10 –
200 Hz and the spike signal between 300 Hz – 5 kHz [2]. The
acquired neural signal of each channel is separated into LFP
and spike signal, which are then processed separately. This
paper only considers the neural spike signal. With a common
quantization of 8 – 10 bits [3] and a sampling frequency
of 20 kHz, the simultaneous acquisition of 100 channels
results in a data rate of at least 16 Mbit/s for the spike
signal. This data has to be transmitted wirelessly out of the
body, since no cables can be attached to the human being
to guarantee maximal mobility during the experiments. Due
to the power constraints of implanted neural recorders, the
wireless transmission of the calculated spike data rate favors
a compression of the spike signal prior to the transmission.

A neural recording system with 100 recording channels
was shown in [1], where the timestamps of the detected
spikes are transmitted to the receiver. Furthermore, the spike
waveform of one selectable channel is transmitted. Therefore,
a spike sorting of the neural signals from all channels
is not possible at the receiver. The use of compressed
sensing (CS) [4] for the compression of neural recordings
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Fig. 1. Embedding of CS into the 100-channel neural recorder frontend

was demonstrated to work for low-noise neural spike signals
in [5], but the results of the signal reconstruction after CS
were not evaluated by means of a spike sorting algorithm;
even though this is mandatory when a lossy compression
is used for neural spike compression. The compression of
detected and extracted neural spikes in a neural recording
with CS was reported in [6].

In this paper, CS is implemented for the compression of
neural spike signals and the compression results are evaluated
with the spike sorting program OSort [7]. The neural spike
signal and not only extracted spikes are compressed and
transmitted for the possibility of an unrestricted data analysis
at the receiver. Fig. 1 shows the embedding of CS into the
neural recorder frontend. The advantages of CS are the high
possible compression rate and the low complexity of the
compression scheme. Because of the sparse nature of neural
spike signals, CS seems to be suited for their compression.

This paper is structured as follows. The methods used for
the evaluation of the compressed data sets are described in
section II. The theory of CS and the implementation are given
in section III. The performance of CS is shown in section IV.
Section V concludes the paper.

II. METHODS

A. Evaluation of CS

A suitable evaluation scheme is necessary to test whether a
reconstructed signal after any kind of compression contains
the relevant information of the uncompressed signal. In a
neural recording, the number, timestamps and shapes of the
spikes are relevant to decode either a spike rate code or a
code based on the spike timings. The analysis of a spike
signal is commonly performed with a spike sorting program.
The spikes emitted by different neurons are distinguishable
by the shape of their waveforms and amplitudes [7]. In a
spike sorting program, the spikes are first detected and then,
based on the spikes’ waveforms, sorted into different clusters
representing the active neurons. The spike sorting software
”OSort” [7] was used to evaluate the spike reconstruction
quality after compression and subsequent decompression of
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Fig. 2. (a) Time-domain signal excerpt of a synthesized neural signal [8].
(b) Spikes detected in the neural signal (60 sec.) containing the excerpt
shown in (a). The colors show the presence of three different spike
waveforms in the recording. (c) Plot of the first two principal components
(PC) of the spikes in (b). The colors signalize the different detected clusters.

the neural signal. Fig. 2a shows an excerpt of a neural spike
signal [8]. After sorting of a neural signal, OSort plots the
waveforms of the detected spikes and assigns the waveforms
to different clusters (see Fig. 2b). The principal component
analysis is used to generate a cluster plot of the spikes (see
Fig. 2c).

The evaluation of a compressed data set is performed
as shown in Fig. 3. At first, the neural spike signal is
sorted without compression (reference sorting) and then
after compression and subsequent decompression (measured
sorting). Both results are compared according to a set of
parameters reflecting the relevant features of a neural signal:
• Percentage of recovered spikes
• Percentage of correctly assigned spikes
• Percentage of additionally detected spikes
• Number of additionally detected clusters

The recovered spikes appear in both the reference and the
measured sorting. If a spike is assigned to the same cluster
in both sortings, it is counted as correctly assigned spike.
Since the sorting algorithm tends to overcluster after a signal
distortion, it is sufficient to check for additional clusters. A
missing cluster is detected by a significant drop of correctly
assigned spikes. The thresholds for a measured sorting to be
considered similar enough to a reference sorting were defined
and validated by a large number of sortings. The percentage
of recovered and correctly assigned spikes had to be greater
than 95 %, the percentage of additionally detected spikes less
than 5 % and no additional clusters were permitted.

B. Selection of neural data sets

Freely available data sets were used for the simulation of
CS to facilitate the reproduction of the results. The first group
of data sets is referred to as synthesized data sets [8]. For
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Fig. 3. Block diagram for the performance evaluation of CS with OSort

each of these data sets, a spike train was synthesized using
3 spike templates which were created from neocortex and
basal ganglia recordings. Then noise created by the unused
spike templates with a standard deviation of 0.05 – 0.4 times
the normalized spike templates’ amplitudes was added [9].
The number of active neurons and emitted spikes is known
for every data set. The second group of data sets is called
recorded data sets which are measured recordings of the
hippocampus of anesthetized rats [10]. The correct number
of active neurons and spikes in these data sets is unknown.

C. Neural signal processing
Since only the neural spike signal had to be compressed,

it was separated from the LFP before the simulations.
Therefore, the neural data sets were highpass filtered using
a Butterworth highpass filter with a cutoff frequency of
300 Hz. After filtering, the spike signal was quantized
with 8 bits, because simulations of spike quantizations in
OSort showed, that with a quantization of less than 8 bits
the percentage of recovered and correctly assigned spikes
dropped significantly. These quantized spike signals were
used for CS and subsequent performance evaluations.

III. THEORY AND IMPLEMENTATION

CS can be viewed as a compression scheme, since it
enables the reconstruction of a signal from a small number
of measurements corresponding to the information rate of
this signal [11].

A. Sparsity
The requirement for CS is the existence of a basis or

dictionary (collection of time-discrete waveforms), wherein
the signals which have to be compressed are sparse. A time-
discrete signal x (x ∈ RN ) is called sparse in a basis Ψ (Ψ ∈
RN×N ), if it can be described with a linear combination of
only a small number K (K � N ) of the basis functions
[11]. Therefore, x can be written as [12]:

x = Ψα with α ∈ RN , (1)

with the basis functions ψi written in the columns of the
matrix Ψ (Ψ = [ψ1, ψ2, ..., ψN ]). Vector α is called K-sparse
for having K nonzero entries. If α only has K very large
entries and N −K small entries, it is called K-compressible.

B. Compressive Sampling
The compression of x is performed by multiplication of

x with an M ×N (M � N ) sensing matrix Φ, resulting in
a vector y (M × 1) [12]:

y = Φx = ΦΨα = Θα (2)

3508



Θ is obtained by the multiplication of Φ and Ψ and y is the
compressed version of x, which is sent to the receiver. Thus,
the fixed compression rate of CS is N

M .

C. Signal reconstruction

A stable reconstruction of the original signal x from
M ≥ K measurements is possible, if the restricted isometry
property (RIP) is fulfilled [12] and the coherence between
the matrices Φ and Ψ is minimal [12]. CS theory shows,
that random Gaussian and Bernoulli matrices fulfill the
incoherence property and RIP with high probability [12]
independently of the dictionary matrix Ψ. If the incoherence
property and RIP are fulfilled for Θ, an exact reconstruction
of α is possible with large probability. The recovery of
the sparse vector α is performed by solving the convex
optimization problem called Basis Pursuit [13]:

α̂ = mineα∈RM
‖α̃‖l1

subject to y = Θα̃ , (3)

where ‖x‖l1
=

∑
i |xi| denotes the l1-norm of x. This

optimization problem can be rewritten as a linear program
[13] and thus, solved in polynomial time. The original signal
x is recovered as x̂ = Ψα̂. This recovery is not computed
on the implanted chip and thus, sufficient computing power
can be assumed for its computation.

D. Implementation of CS

The number of rows and columns N in the dictionary
matrix Ψ was chosen to be 1024. With a sampling frequency
of 20 kHz and a typical spike duration of 2.5 ms, a spike uses
about 50 samples. Dependent on the firing rate of neurons
and the number of active neurons, the percentage of 1024
samples which is occupied by spikes is very variable. N was
selected so large, because at least one spike was supposed to
be present in every data set, even for lower spike emission
rates of the neurons. The parameter M was chosen to range
from 200 to 500, since the compressibility of the neural
spikes in the analyzed dictionaries was never below 10 % of
the 1024 coefficients. A multiple of 2 – 4 of the compress-
ibility is usually used for the selection of M . Therefore, com-
pression rates from 2.05 to 5.12 can be realized. Extracted
and aligned neural spikes were shown to be compressible in
the Daubechies-8 (db8) wavelet domain [6]. In the current
paper continuous neural spike signals are transmitted. Thus,
each neural signal was partitioned into segments of length
N = 1024 containing an unknown number of spikes. The
compressibility of those signal segments was analyzed with
db8 wavelet decomposition matrices utilizing several de-
composition levels. The 6-level db8 wavelet decomposition
matrix was chosen as dictionary matrix, since it delivered the
best compressibility. Furthermore, two dictionary matrices
were created by a sparse dictionary learning program [14]
to increase the compressibility of the analyzed signals. For
both the recorded and the synthesized data sets a separate
dictionary was generated using the data sets of each group in
the learning process. A Gaussian random matrix with entries
of a N (0, 1

M ) distribution was selected as sensing matrix.
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Fig. 4. Percentage of correctly assigned spikes for the synthesized data
sets after CS with a Gaussian random sensing matrix. (a) Results obtained
with the 6-level db8 dictionary matrix. (b) Results obtained with the learned
dictionary matrix for synthesized data. M = 200 – 500 corresponds to a
compression rate of 5.12 – 2.05.

IV. RESULTS

The results of the selected evaluation parameters in OSort
show a high correlation and therefore, only the results for
the correctly assigned spikes are shown here.

A. CS results with synthesized data sets

Fig. 4a shows the percentage of correctly assigned spikes
for the synthesized data sets after CS with the 6-level db8
dictionary matrix. The data sets with the lowest noise level
of 0.05 times the spike templates’ amplitudes (A2, A6, A10
and A19) perform best. For the two highest values of M ,
the percentage of correctly assigned spikes exceeds 95 %
for most data sets, but the percentage of correctly assigned
spikes in the data sets A16 – A18 remain far below 90 %.
These are the data sets with the highest noise levels of 0.35,
0.3 and 0.4 respectively.

The percentage of correctly assigned spikes obtained after
CS with the learned dictionary is shown in Fig. 4b. For
M = 500 the performance is on average 2.3 % better
than with the wavelet dictionary. For both dictionaries the
percentage of correctly assigned spikes is correlated with
the known noise level in the data sets. The lower the noise
level, the higher the percentage of correctly assigned spikes.
To summarize the results, CS for the synthesized data sets
utilizing M = 500 and a 6-level db8 wavelet dictionary
matrix works for all data sets with the lowest noise level of
0.05 and for some data sets with a noise level of 0.1, 0.15
and 0.2 according to the defined criteria in OSort. Thus, CS
can be used to compress 52.4 % of the synthesized data
sets with a compression rate of 2.05. CS for the learned
dictionary works for 76.2 % of the synthesized data sets
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Fig. 5. Percentage of correctly assigned spikes for the recorded data sets
after CS with a Gaussian random sensing matrix. (a) Results obtained with
the 6-level db8 dictionary matrix. (b) Results obtained with the learned
dictionary matrix for recorded data. M = 200 – 500 corresponds to a
compression rate of 5.12 – 2.05.

using M = 500. These are all data sets (except A4 and
A21) with a noise level lower than or equal to 0.25.

B. CS results with recorded data sets

The percentage of correctly assigned spikes for the
recorded data sets after CS with the 6-level db8 wavelet
dictionary matrix is shown in Fig. 5a. Data set B5 shows
the poorest performance for M = 500. This is the data set,
in which the largest number of clusters of all recorded data
sets is detected in the reference sorting. The noise level in the
recorded data sets is higher than in the synthesized data sets,
but difficult to measure exactly, since no ground truth data
are available. Because of the higher noise level, CS might not
be able to reconstruct the spikes with the required variability.
Consequently, many spikes are assigned to wrong clusters by
OSort. For all data sets the percentage of correctly assigned
spikes is below 95 % and thus, the requirements for a good
sorting result in OSort are not met by any data set.

The percentage of correctly assigned spikes using the
learned dictionary is shown in Fig. 5b. For M = 500 the
performance is on average 1.2 % better than with the wavelet
dictionary. The learned dictionary provides better compress-
ibility than the wavelet matrix, since the waveforms of the
dictionary were learned from the original spike waveforms.
However, no data sets meets the defined requirements for
a good sorting result in OSort and thus, CS does not work
satisfactorily with M = 200 – 500 for both dictionaries.

V. CONCLUSION

This paper showed the implementation of CS for the
compression of synthesized and recorded neural spike signals
in MATLAB. The performance of CS was evaluated using

the spike sorting software OSort. The simulations showed
the performance of CS to be highly dependent on the noise
level in the neural data set. With increasing noise level
the original compressibility assumption gets invalid. If the
standard deviation of the noise level of the synthesized data
sets is lower than or equal to 0.05 times the amplitude of
the spike templates, CS utilizing the 6-level db8 wavelet de-
composition matrix as dictionary matrix was shown to work
satisfactorily with a compression rate of 2.05. In contrast to
the compression of continuous neural spike signals shown
in [5], CS for noisy recorded signals is found to be not
working satisfactorily.

However, CS could be used to compress extracted and
aligned neural spikes as shown in [6]. In that case, the
variability of the data can be controlled and the compress-
ibility of the analyzed signal is guaranteed, since only one
spike is compressed at a time. If only detected and extracted
spikes were compressed and transmitted to the receiver,
the compression rate would increase, but the possibility of
unrestricted data analysis at the receiver would be lost. The
use of CS to compress neural spike signals, while keeping
the entire information of the signal, is not recommended.
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