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Abstract— The development of automatic sleep based ab-
normality detection in patient for sleep related problem is a
key field in the recent research. However the sleep signals are
obtained as long-time recordings and inhibit complex charac-
teristics, making their analysis computationally challenging. As
a result, recognition methods that facilitate efficient dimension-
ality reduction are developed to suit different applications. In
recent years sparse representation schemes provide an effective
means for achieving best possible data reduction by comparing
the input with pre-formulated dictionaries, especially for huge
datasets. Recent research proves the usability of these methods
for signal classification. In this paper, a robust technique
is provided for sparse representation of small dataset signal
types. Here, the signal decomposition is obtained using the ℓ

1-
minimization technique, following which a generalization based
on the leave-one-out (LOO) is performed. The dependency of
the proposed algorithm is analyzed, using a sparsity measure,
in order to verify the dependency between the input data and
extracted feature space. Performance measures obtained using
long-term sleep data shows an average classification accuracy
of 80% and further validates the usefulness of the technique
for long term biomedical signal analysis.

I. INTRODUCTION

A significant amount of research and effort has been

devoted to the analysis of the effect of the size of both the

testing and training samples on the design of the pattern

recognition systems specially in biomedical applications [1].

In general, due to the nature of biomedical signals, many

variables are likely to be correlated. When the number

of variables are high, an increase in the discriminatory

power is not necessarily ensured. Thus a subset of these

variables can be chosen such that the others may not contain

substantial additional information. Many different variable

selection methods have been proposed; among those, sparse

representation have attracted a great deal of attention in the

past few years for applications such as face recognition, text

recognition, gene expression array analysis and many more.

However, to the best of authors knowledge there has not been

any work done on analysis of sparse representation for EMG

analysis in sleep.

Sparse representation schemes provide a compact rep-

resentation for signals using a combination of atoms (or

elements) chosen from an over-complete dictionary. How-

ever, owing to non-availability of overcomplete dictionaries

that suits all data types, the representation tends to span

through multiple dictionaries resulting in residual errors
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during signal approximation. Recent research in sparse ap-

proximation involves extension of these techniques towards

obtaining optimal signal discrimination, although some of

the conventional techniques such as Fourier transform and

wavelet transform operate on the principle of sparseness in

a broader sense.

Following the introduction of sparse theory, many approx-

imation tools were developed for specific tasks [2]. The main

principle behind these techniques is that for a given signal

(often a larger dataset), the representation that offers the

most compact solution (and corresponding minimal error) is

considered for further analysis and/or decision making [3].

Huang et al. [4] proposed the use of sparse representa-

tion for signal classification application, by incorporating

reconstruction properties, discrimination power and sparsity

during the approximation process. The coding also uses

an empirical set of weight factors to optimize the overall

performance such that the error rate is reduced to 0.25 when

the occlusion is present. However, their validation is based

on a non-linear Fisher information score. Following this,

Wright et al. [5] considers the problem of automatic face

recognition. They propose a general algorithm for image-

based object recognition and claimed that if sparsity is

properly harnessed, the choice of features is no longer critical

i.e. number of features does not have a direct correlation

with the performance as long as the sparseness criterion

is satisfied. Sparse techniques have also been successfully

used for cancer diagnosis applications using gene expression

data [6], proving their usability for real-life signals. The

authors performed a rigorous validation approach whereby

the performance of the algorithm was compared with a

variety of support vector machines. The original goal of these

works was reconstruction using sparse representation in face

database, where the limitation of the sample size is not an

issue.

Irrespective of the availability of these techniques for clas-

sification applications, there still exist certain open problems

such as [5]:

1) Incompleteness of sparse theory

2) Non-availability of a robust technique (or generaliza-

tion) that can accommodate small dataset

3) Dimension reduction (Feature extraction)of long term

signals (such as sleep) is important

4) Ease of Validation that could accommodate a variety

of synthetic and real signals.

In addition to the above, for a given classification problem,

lack of adequate samples tends to bias the training and testing

results, limiting their performance consistency for higher-
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order problems. To reduce this inconsistency, Leave-One-Out

(LOO) method is considered an optimal validation approach,

with a least biased estimate [7]. This research work attempts

to address the issue associated with lack of robust generaliza-

tion techniques for sparse approximation when using small

dataset. We propose generalization algorithms, based on

the linear programming problem, using the LOO approach.

The resulting signal approximates are validated based on

the degree of sparsity measure and classification accuracy.

Further, a preliminary investigation about the dependency

between the input and feature vectors sets is provided.

A long-term sleep signal collected during Rapid eye move-

ment (REM) stage is used for performance assessment. In

Section II we present a brief overview about the sparse

approximation theory. The methodology for sparse signal

classification is elaborated in Section III and the proposed

generalization algorithm is explained in Section III-B. Sec-

tion IV discusses the performance evaluation of the algorithm

for sleep signals. Finally, in Section V we conclude the paper

by highlighting the main contributions of this work.

II. SPARSE REPRESENTATION BY ℓ1 MINIMIZATION

Let Ai = [ai
1, a

i
2, ..., a

i
n] ∈ ℜdXni be a matrix and each

column of which is the training samples from the ith class,

where i = 1, ..., k, and y ∈ ℜdX1 be a new test sample. If

ai
lj and yj be the jth entry of ai

l and y respectively, matrix

A will be the entire training set in which it’s elements are

set by concatenating the training sample of all k classes:

A = [A1, A2, ...Ak] = [A1
1, A

1
2, ..., A

k
nk

] ∈ ℜdXn (1)

then a linear representation of y can be rewritten in terms

of all training samples as

y = Ax0 ∈ ℜd (2)

where ideally

x0 = [0, ...0, αi,1, αi,2, ..., αi,ni
, 0, ...0]T ∈ ℜn (3)

is a coefficient matrix whose entries are zero except those

associated with the ith class. In other words, the nonzero

entries in the estimate x0 will all be associated with the

columns of A from a single object class i, so we can easily

assign the test sample y to the class.

From (3) it is apparent that the representation of y is

naturally sparse if the number of object classes k is rea-

sonably large. So the problem can be converted into finding

a column vector x such that y = Ax and ‖x‖0 is minimized,

where ‖x‖0 is ℓ0 -norm, and it is equivalent to the number of

nonzero components in the vector x, which is the so-called

sparse representation. This can be expressed as the following

optimization problem [8]:

x̂0 = argmin‖x‖0 subject to: Ax = y (4)

However, finding the solution to sparse representation

problem is NP-hard due to its nature of combinational

optimization [5][9]. Nevertheless, recent developments in

the theory of sparse representation and compressed sensing

[4][10]have shown that if the solution x0 is sparse enough,

the solution of ℓ0 minimization is equivalent to the following

ℓ1 minimization problem

x̂1 = argmin‖x‖1 subject to:Ax = y (5)

This problem can be solved in polynomial time by stan-

dard linear programming (LP) methods i.e. [11].

III. METHODOLOGY

A. Classification Based on Sparse Representation

Variable selection methods such as Principal Component

analysis (PCA) seeks for directions to project the data such

that the projected data explain most of the variability of the

original setting. In this way one obtains a low dimensional

representation of the data without losing much information.

PCA in general targets for the problems that are mainly

unsupervised which may not be suitable for many classi-

fication problems (PCA has been used as a preprocessing

step for a classifier). Sparse representation on the other

hand establishes a more rigorous mathematical framework

for studying long term biomedical signals, consequently

attracting a great deal of attention in the past few years.

However, to the best of authors knowledge there has not been

any work done on analysis of sparse representation for long

term EMG analysis in sleep and this is the main motivation

behind this work. In the following we will explain how our

algorithm works:

Given a new test sample y, the sparse representation x̂1 is

computed using (5). In an ideal case, the nonzero entries

in the estimate x̂1 will all be associated with the columns

of A from a single object class i, and based on the global

sparse representation y can simply be assigned to the object

class with the single largest entry in x̂1. Yet, noise and

modeling error may lead to small nonzero entries associated

with multiple object classes [5].

For each class i, δi: ℜn −→ ℜn is the characteristic

function which selects the coefficients associated with the

ith class. In other words, for x ∈ ℜn, δi(x) ∈ ℜn is a new

vector whose only nonzero entries are the entries in x that

are associated with class i. The approximate of the given

test sample y is ŷi = Aδi(x̂1), which is estimated using

only the coefficients associated with the ith class. In this

work, a generalized sparse representation is achieved using

the training samples by assigning y to the object class that

minimizes the residual between y and ŷi:

The algorithm given below summarizes the complete

classification procedure. Our implementation minimized

the ℓ1 -norm using LP algorithm based on [11]. Our

algorithm is different from previous attempts because we

focus to attain a method using LOO and later to generalize

it to Leave-M-Out (LMO) for classification of the sparse

coefficients.

Algorithm : Generalized algorithm based on Sparse

Representation using Leave-M-Out Cross-Validation

1) Input: a matrix of feature set, M number of samples

to be out for testing
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2) Use cross validation to randomly split the data

into a distinct matrix of training samples A =
[A1, A2, ...Ak] ∈ ℜdX(n−m) and test sample y ∈
ℜdXm

3) Solve the ℓ1 minimization problem

x̂1 = argmin‖x‖1 subject to Ax = y

4) Compute the degree of sparsity of x̂1

5) Compute the residuals: ri(y) = ‖y − Aδi(x̂1)‖2

6) Identify(y) = argmini ri(y)
7) Leave-M-Out Cross-validate to check the correctness

of the results (special case LOO)

8) Output: The average of correctly identified.

The choice LOO in this algorithm refers to cases where

deficient number of samples is accessible. In these cases the

unbiased approximation and the variability of the estimate

when the entire training set is varied is approximately zero,

i.e. the difference between the expected LOO error and

the true error is approximately zero, where the expectation

is over random training sets of samples from the same

underlying distribution.

Prior to proceeding on with the validation of the proposed

algorithm for EMG in REM sleep, the sparsity that the

method has to offer for signal representations is evaluated.

This is done by computing the sparsity index, as defined by

Hurly et al [12] and is explained in the following subsection.

B. Sparsity Measure

There is a great deal of study suggesting that random

features perform well for sparse signal recovery [13]. For

example for any signal x that are sparse or sparse in some

known orthobasis, the properties of sparse recovery from ran-

dom measurements are well understood. If A does not have

good properties for sparse recovery using ℓ1 minimization,

then signal could not be recovered [14][15]. On the other

hand the measure of sparsity has not been fully analyzed

for signal classification. The motivation is that in this work

we are looking for markers where the characteristics of the

representation is more visible by attempting to represent

them in a sparser domain. These markers can be used in

integration with a defined feature space for obtaining more

robust classification.

In this paper, we exploit the discriminative nature of sparse

representation since the residual measures how well the

representation approximates the test sample; and the degree

of sparsity measures how good the representation itself is.

Several sparseness measure have been proposed and used in

literature. One of the sparsity functions (Sp) that has been

used in this paper for each sample x is as follows [12]:

Sp(x) = (
1

Cp

)(
( 1

n−1 )
∑n

i=1 |xi − m|p

1
n

∑n

i=1 |xi|p
)

1

p (6)

where

m = (
1

n
)

n∑

i=1

xi (7)

and

Cp = (
(n − 1)p−1 + 1

np−1
)

1

p (8)

The default value for p is chosen to be one and n is the

length of the feature set . The sparsity is one if and only if

a vector contains a single non-zero components, and is zero

if and only if all the components are equal.

IV. EXPERIMENTAL RESULTS

We test the sparse representation-based LMO classification

algorithm using Autoregressive (AR) coefficients from the

Electromyogram (EMG) signals in rapid eye movement

(REM) stage of sleep [16]. In sleep laboratories sensors

gather huge amount of data in a computer, and then sleep

experts study the signals to extract the information from the

data. As they gather a huge amount of data, looking for an

event which could be only a small part of the data requires

highly trained technicians, and fatigue of the technician due

to long work hours could affect the accuracy of diagnosis.

Thus, automation could play a role in development of faster,

cheaper and reliable mobile health care. In other words if we

apply the appropriate tools to automatically extract accurate

information and provide valuable inputs to health experts,

they could spend less time on extracting information and

more time on helping cure the diseases.

A. Database

The dataset consists of signal segments from 8 chin EMG

signals (4 with normal behavior and 4 with RBD) undergone

the sleep test. A traditional scoring system for sleep has been

established [17], with the electrophysiological parameters

of EEG, EOG and EMG. The system used for recording

chin EMG signals during sleep includes 3 relatively midline

electrodes, one above the jaw line, one below the jaw line

and one back-up electrode. The two electrodes are typically

subtracted from another to eliminate artifacts shared by both

electrodes. The EMG signal is freely triggered and band-pass

filtered at 10 − 100 Hz. The impedance of each electrode

is less than 10kΩ with a minimum digital resolution of

12 bits per sample. The sampling rate is 256 Hz. Similar

electrodes are used to record EEG and EOG amongst other

physiological parameters. In this study, a subject is defined

as historically normal if there is no history of any violent

behavior during the night sleep; otherwise it is considered

as abnormal.

B. Evaluation

We computed the classification rates with the feature space

dimensions of 956×26. This feature space is calculated using

adaptive signal processing to adaptively segment the signal

into stationary segments and then use each segment to calcu-

late the AR coefficients of model order 26 [16]. In Table I,

we present the classification accuracy of the AR coefficients

using sparse representation for different M , as well as the

degree of sparsity of the sparse approximation coefficients.

The degree of sparsity for all sparse approximation of this

feature set is calculated using Equation 6. From this Table, it
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TABLE I: The classification accuracy of AR coefficients

feeded into a sparse representation algorithm for different M

of Leave-M-out as well as the degree of sparsity of sparse

coefficients
Classification Sparsity of the

M Accuracy Sparse

(%) Coefficients

1 80.5 0∼1 (avg = 0.79)

10 79.8 0.18∼0.78 (avg = 0.67)

100 77.1 0.37∼0.67(avg = 0.55)

200 66.4 0.4∼0.56 (avg = 0.5)

400 59.7 0.39∼0.58 (avg = 0.5)

478 59.5 0.41∼0.56 (avg = 0.49)

is apparent that, the generalization scheme in practical appli-

cation strongly depends on the value of M . It is also visible

that sparsity measures reduces as we increase the value of

M . The higher the value of M , the lower is the accuracy.

Although LOO cross-validation method generally incurs a

high computational cost, it is the least biased estimate since

rigorous validation is performed compared to LMO cross-

validation which exhibit a comparatively higher variance [7].

In this case, the algorithm reaches its maximum learning

capacity (stability) by LOO method, since the perturbation

induced by LOO is small and therefore the classifier is

stable. As we increase the size of the perturbation, stability

is less likely to hold and the sparse approximation is less

sparse, thus the accuracy reduces by about 20%. To prove the

generality of the algorithm, we analyzed the algorithm using

different number of segments. This is shown in Figure 1,

where we used 10%, 20%,...100% of the segments and

applied LMO for both M = 1 and M = 50% of the original

feature space. The overall performance of all the cases when

M = 1 is about 80.5%, however this value reduces by about

20% to 60% as we increase M . The results compared to

the previous work [16] shows that sparse representation for

classification using LOO generalization increases the overall

performance accuracy by about 10% in which the overall

implementation of the algorithm itself takes only few seconds

on a typical 3 GHz PC.
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Fig. 1: Overall classification accuracy for M = 1 and

M = 50% of the feature space for different segment

length of the AR coefficients

V. CONCLUSION

In this paper, we have contended both theoretically and

experimentally that exploiting sparsity is critical for perfor-

mance evaluation of EMG in REM sleep. We proposed a

novel generalization algorithms, based on the linear pro-

gramming problem, using the LOO and LMO approaches.

The resulting signal approximates are validated based on

the degree of sparsity measure and classification accuracy.

With sparsity properly harnessed, the inconsistency of lack

of generalization reduces when LOO method is considered.

Performance measures obtained using long term sleep data

has validated the usefulness of the technique for real time

data processing of long term biomedical signals.
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