
  

 

Abstract—This study shows how different EMG-epoch 

lengths affect the selection of the autoregressive-model orders. 

Electromyography signals were divided in 25ms, 50ms, 100ms, 

250ms and 500ms epochs. Order-selection criteria were applied 

to the least-square errors of autoregressive models. The 

Bayesian Information Criterion and the Minimum Description 

Length indicated that needle-EMG signals recorded from 

normal subjects at 25kHz could be represented by 

autoregressive models using orders below 25 for 500ms epochs, 

and that smaller orders could be used to represent shorter 

epochs. 

I. INTRODUCTION 

Electromyography (EMG) signals have been used in 
several studies, including hand motion classification, 
electrode shift during movements, muscle fatigue, and 
diagnosis of neuromuscular diseases. [1–7] 

As an aid to clinical diagnosis, several EMG parameters 

have provided useful informationtemporal parameters 
(amplitude, duration, number of phases and zero crossings), 
spectral parameters (median and mean frequencies), and 
linear-model parameters (autoregressive and cepstral 
coefficients) among others. [4–7] 

On the autoregressive (AR) modeling of EMG signals for 
diagnosis purposes, the epoch duration has been chosen in a 
wide range, from 25.6ms to 500.0ms The AR-model order 
has also been selected in the range of 12 to 20. These ranges, 
associated with several other methodological differences, 
resulted in global classification rates varying from 47.5% to 
87.5%. [6–7] 

These results indicate that the choice of the AR-model 
order is an important issue, and that it may be influenced by 
the EMG epoch duration. No previous work has studied the 
variation of the AR-model order with the length of EMG 
epochs recorded under the same experimental settings. So, 
this work aims to study how different EMG-epoch lengths 
may affect the selection of the autoregressive-model orders. 

II. METHODS 

An EMG database was used. Twenty-one signals were 
selected from three subjects that presented no neuromuscular 
disease. They lasted 500ms and had been classified as 
stationary by the Wald-Wolfowitz test. [8] The database 
signals had been recorded from the biceps brachii at 50% of 
maximum voluntary contraction. They had been amplified 
100 to 1,000 times, had been filtered by a low-pass with a 

 
* C. Itiki is with the Biomedical Engineering Laboratory, University of Sao 

Paulo, Sao Paulo, SP 05508-970, Brazil (phone: +55(11)3091-5150; fax: 

+55(11)3091-5718; e-mail: cinthia@leb.usp.br). 

cut-off frequency of 10kHz, and had been acquired by a 12-
bit A/D converter at the rate of 25 thousand samples per 
second.  

In this work, each 500ms signal was divided into two 250 
ms epochs, five 100ms epochs, ten 50ms epochs or twenty 
25ms epochs. The range of 25ms to 500ms was chosen to 
encompass the usual epoch durations found in the literature. 
[6–7] 

Each epoch was modeled as the output of an 
autoregressive system, described by [9] 

 y(t) + a1 y(t–1) + … + an y(t–n) = e(t), (1)  

where  y(t)  was the output signal,  ak  were the model 
coefficients,  e(t)  was the unknown input white noise,  
t=1, …, N  was time,  N  was the total number of samples, 
and  n  was the model order. The model coefficients and the 
input-signal variance were computed by Matlab’s arx.m 
function, which minimized the least square error, through 
QR factorization (see appendix). 

For a given epoch, the input variance—that varied with 
the number (n+1) of coefficients—was used in three order 
selection criteria [10–12]. These criteria selected the optimal 
order as the one that minimized a function pondering the 
epoch length N and the model order n, according to 

)σ̂,σ̂,,()σ̂,,()σ̂,σ̂,,( 22222
nynny nNhnnNgNnNf  , (2)  

where N was the epoch length, n was the autoregressive-

model order, 2σ̂n  was the variance of the estimated input 

signal, 2σ̂ y  was the output-signal variance estimate computed 

in the epoch, and the pondering functions were )σ̂,,( 2
nnNg  

and )σ̂,σ̂,,( 22
nynNh , given by Table I. 

The epoch lengths were 12,500 samples, 6,250 samples, 
2,500 samples, 1,250 samples or 625 samples for epoch 
durations of 500ms, 250ms, 100ms, 50ms or 25ms 
respectively. The model order swept the 1 to 99 range.  

TABLE I.  PONDERING FUNCTIONS FOR AKAIKE INFORMATION 

CRITERION (AIC), BAYESIAN INFORMATION CRITERION (BIC) AND 

MINIMUM DESCRIPTION LENGTH (MDL) 

 )σ̂,,( 2
nnNg  )σ̂,σ̂,,( 22

nynNh  

AIC )σ̂ln( 2
n  2 

BIC ))/1(σ̂ln( 2 Nnn   ))/1()σ̂/σ̂1(ln( 22 nNny   

MDL )σ̂ln( 2
n  ln(N) 
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III. RESULTS 

Fig.1 shows the mean orders selected by the three 
criteria, for the five epoch durations. The more compact 
models are indicated by BIC, closely followed by MDL. On 
the other hand, AIC provided the highest order estimates, 
indicating an overestimation of the autoregressive-model 
order. On average, the selected model order augments with 
the increase of the epoch duration. 

Fig. 2 shows the histograms of the optimal order selected 
by the Akaike’s Information Criterion (AIC) for all the 
epoch durations. The shape of the histograms varied with the 
epoch length, as the selected orders were spread over the 
whole range (1 to 99) for long epochs (250ms to 500ms) and 
were concentrated in the low orders for short epochs (25ms 
to 100 ms). 

For the Bayesian Information Criterion (BIC), Fig. 3 
shows the histograms of selected orders. Unlike the AIC 
histograms, the BIC histograms show a concentration in the 
low orders for all epoch lengths (25ms to 500ms). 

Fig. 4 shows similar results for the optimal orders 
selected by the Minimum Description Length (MDL). There 
is a concentration in the orders below 12 and 25, for short 
and long epochs respectively. 

Table II shows the mean values and standard deviations 
of the orders that were selected by the three criteria. The 
standard deviations presented on table II confirmed that the 
AIC order estimates were more widely spread over the 1 to 
99 range, in comparison to BIC and MDL. The mean values 
also showed that AIC provided the highest order estimates. 
On the other hand, BIC provided the smallest order 
estimates, which were also more concentrated around the 
mean values. 

The BIC and MDL results obtained in this work 
corroborate to the order 20 used by [6] for 500ms epochs, 
and the order 12 used by [7] for 25,6ms epochs.  
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Figure 1.  Mean orders selected by AIC (*), BIC () and MDL () for 

epoch durations of 25ms, 50ms, 100ms, 250ms and 500ms. 

TABLE II.  SELECTED ORDER (MEAN VALUE ± STANDARD DEVIATION) 

OF AUTO-REGRESSIVE MODELS BY AIC, BIC AND MDL. 

Epoch duration AIC BIC MDL 

25ms 10±9     4±1     5±3   

50ms 11±9     5±2     6±2   

100ms 15±11   6±3     7±3   

250ms 24±18   7±3   10±5   

500ms 45±29 11±5   12±8   
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Figure 2.  Histogram of the optimal orders selected by AIC for epoch 

durations of a) 25ms, b) 50ms, c) 100ms, d) 250ms and e) 500ms. 
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Figure 3.  Histogram of the optimal orders selected by BIC for epoch 

durations of a) 25ms, b) 50ms, c) 100ms, d) 250ms and e) 500ms. 
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Figure 4.  Histogram of the optimal orders selected by MDL for epoch 

durations of a) 25ms, b) 50ms, c) 100ms, d) 250ms and e) 500ms. 
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IV. CONCLUSION 

The Akaike Information Criterion was used as a 

comparison standard, and showed its well-known trend to 

overestimate the orders of autoregressive models. The 

Bayesian Information Criterion and the Minimum 

Description Length indicated orders below twenty five for 

500ms epochs, and below twelve for 25ms epochs. These 

quantitative values should be interpreted in the experimental 

context and should not be extrapolated to different sampling 

frequencies, to other contraction forces, to surface 

electromyography or to pathological subjects. Future works 

should address these diverse experimental conditions. 

However, some qualitative results can be extended to 

different experimental settings. Indeed, this work shows that 

short EMG epochs can be described by low-order AR 

models, which could apply to isolated motor unit action 

potentialswhose duration is compatible with 25ms epochs. 

On the other hand, interference patterns are usually analyzed 

in longer epochs, and as a consequence, they would be better 

described by higher-order AR models. In this case, the 

compromising choice of medium-length epochsbetween 

100ms and 250mswould reduce the optimal AR-model 

orders and consequently the computational load as well.  

The choice of AR orders should not be based on previous 

results for different experimental conditions, but it should be 

confirmed for the specific EMG recording settings. For this 

purpose, MDL provided intermediate values of order 

estimates, when compared to AIC and BIC. Furthermore, its 

pondering functions are simpler than the ones for BIC, 

guaranteeing a smaller consumption of computing time. So, 

the results from this work suggest that MDL should be used 

to estimate the AR-model order for EMG signals. 

APPENDIX 

The set of n equations (1), for t = 1, 2, …, N, could be 
represented in matrix notation by 

 yN – Φ θn = eN, (3) 

where yN
T
 = [ y(1) … y(N)], eN

T
 = [ e(1) … e(N)], 

θn
T
 = [ a1 ... an ],      Φ

T
 = [ φ(1) ... φ(N) ],      and   

φ
T
(t) = [ –y(t–1) ... –y(t–n) ]. 

In the least squares method, the parameter estimate nθ̂  is 

the minimizing argument of [13] 

 VN(θn, yN) = ( yN – Φ θn )
T
 (yN – Φ θn ). (4) 

An efficient solution for the minimization problem is the 

QR factorization [13]. An orthonormal NN matrix Q and an 

upper triangular  N(n+1) matrix R are used to represent  

 [Φ  yN ] = Q R (5) 

where Q
T
Q=I and 

T

r
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matrix R1, a n1 column vector  r2 and a scalar  r3.  The left- 

multiplication of (5) by Q
T
 results in 

 Q
T
 [Φ  yN ] = Q

T
 Q R = R. (6)  

Using the orthonormality property of matrix Q, the 
minimizing function can be rewritten as  

 VN(θn, yN) = ( yN – Φ θn )
T
 Q Q

T
 (yN – Φ θn ). (7)  

As a result, the function to be minimized is [13] 

 VN(θn, yN) = [ r2–R1θn ]
T
 [ r2–R1θn ] + r3r3,  (8)  

whose solution is given by a set of n equations [13] 

 
21 rθR n

ˆ
, (9)  

and results in the loss function 

 33),ˆ( rrV T
N Nn yθ . (10)  
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