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Abstract— This study focuses on the analysis of airflow (AF) 
recordings to help in sleep apnea-hypopnea syndrome (SAHS) 
diagnosis. The objective is to estimate the apnea-hypopnea 
index (AHI) by means of spectral features from AF data. 
Multiple linear regression (MLR) was used for this purpose. A 
training group is used to obtain two MLR models: the first one 
consisting of features obtained from the full PSDs (MLRfull) and 
the second one consisting of features from a new frequency 
band of interest (MLRband). Then a test group is used to validate 
the final model. The correlation of spectral features and MLR 
models with AHI was compared by means of Pearson’s 
coefficient (ρ). MLRband reached the highest ρ  (0.809). Four 
different AHI decision thresholds were used to evaluate 
MLRband ability to distinguish the severity of SAHS. The 
accuracy achieved was higher as the threshold increased 
(69.7%, 75.3%, 80.9%, 87.6%) These results suggest that the 
automated estimation of AHI through spectral features can 
provide useful knowledge about SAHS severity.   

I. INTRODUCTION 

The sleep apnea hypopnea syndrome (SAHS) is a 
prevalent disease characterized by recurrent events of 
complete cessation (apneas) and significant reduction 
(hypopneas) of breathing during sleep [1]. SAHS has been 
associated with other diseases such as cardiac failure, stroke, 
atrial fibrillation and sudden cardiac death [2]. Moreover, 
daytime sleepiness caused by SAHS has been recognised as a 
risk factor for occupational accidents and motor-vehicle 
collisions [3], [4]. 

The standard test for SAHS diagnosis is 
polysomnography (PSG) [5]. PSG is a complex test since 
many physiological signals are recorded from patients while 
they are asleep. Electrocardiogram (ECG), 
electroencephalogram (EEG), airflow (AF) and oxygen 
saturation (SpO2) are some examples [6]. Furthermore, PSG 
needs overnight supervision of patients and offline visual 
inspection of signals in order to derive the apnea-hypopnea 
index (AHI). AHI estimates the number of apneas and 
hypopneas events per hour during sleep and is used to 

evaluate SAHS severity [1]. PSG is associated to long 
waiting lists and increased delay time for a final diagnosis 
[7]. Thus, simpler methods to detect SAHS are needed.  One 
common alternative is to analyze a reduced set of signals 
from overnight PSG [8].  
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This paper focuses on the analysis of single channel AF. 
There exist several previous studies focused on SAHS 
detection by means of AF analysis [9]-[12]. Most of them are 
aimed to derive a respiratory disturbance index (RDI) by 
counting events of reduction in the AF amplitude. However, 
despite its usefulness for research purposes, RDI is not 
designated as the reference diagnostic parameter [6]. 

The main objective of the study is to automatically derive 
the AHI from AF. The extraction of features from power 
spectral density (PSD) of recordings is proposed for this 
purpose. This analysis has proved to be useful in SAHS 
detection [8], [10], [13]. Then multiple linear regression 
(MLR) technique is applied to spectral features in order to 
estimate AHI. This estimation could provide useful 
knowledge about SAHS severity.  MLR is a common statistic 
technique for regression analysis [14]. It has been used in 
previous studies for AHI estimation from SpO2 data [15], 
[16]. Finally, the ability of the proposed methodology to 
distinguish SAHS severity is assessed. Four severity 
thresholds of the AHI are used for this purpose. 

II. SUBJECTS AND SIGNALS 

The study involved 148 adult subjects, 79.1% men and 
20.9% women. All of them were suspected of suffering from 
SAHS due to previous symptoms such as daytime sleepiness, 
loud snoring and nocturnal choking and awakenings. 
Subjects underwent overnight PSG in the sleep unit of the 
Hospital Universitario Rio Hortega in Valladolid, Spain. The 
Review Board on Human Studies accepted the protocol, and 
all subjects gave their informed consent to participate in the 
study. Physicians established the AHI threshold for a positive 
diagnosis in 10 events per hour (e/h). Accordingly, 100 
subjects were considered SAHS-positive and 48 SAHS-
negative. Apnea was defined as the cessation of AF for 10 
seconds at least. Hypopnea was defined as a 30% reduction 
in AF during 10 seconds or more, accompanied by a 4% or 
more decrease in the saturation of haemoglobin. The subjects 
were randomly divided into two groups: training group 
(40%) and test group (60%). 

AF signals were obtained from PSG (Alice 5, 
Respironics, Philips Healthcare, The Netherlands). A 
thermistor (Pro-Tech) was used to measure AF at sample rate 
of 10 Hz. The length of the recordings was 7.24 ± 0.38 h 
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(mean ± sd). Table I summarizes demographic and clinical 
data from the population under study.  

III. METHODS 

The PSD of AF recordings was estimated by means of the 
non-parametric Welch method. This method is suitable when 
analyzing non-stationary signals [17]. Each recording was 
divided into Hamming windows of 2048 samples, with 50% 
overlap and 4096-points DFTs, in order to compute the final 
estimation.  

A.  Definition of bands of interest 
The frequency band of interest was defined as the spectral 

region in which the statistically significant differences 
between the PSD of both populations (SAHS-positive and 
SAHS-negative) were higher. Thus, the non-parametric 
Kruskal-Wallis test was used to compute the p-value along 
frequencies. A band of interest was derived (0.024-0.056 
Hz.) by choosing the range of frequencies for which the p-
value was the lowest in the training group. Fig. 1 displays a 
joint representation of the PSD of each population. The 
frequency band of interest is also shown. 

 B. Spectral features 
Several spectral features were extracted from the PSDs of 

AF recordings. All of them were obtained from the band of 
interest as well as the full PSD. First-to-fourth statistical 
moments (Mf1-Mf4), peak amplitude (PA) and Wootters 
distance (WD) were used to reflect the recurrence of apnoeic 
events. The arithmetic mean (Mf1), standard deviation (Mf2), 
skewness (Mf3) and kurtosis (Mf4) quantify the central 
tendency, dispersion, asymmetry and peakedness of PSD 
values, respectively. PA is the maximum of the PSD in a 
given frequency region and can be computed as follows: 

PA = max
f

{PSD( f )}, f (Hz)∈[ fi , fN ], i = 1,2,..., N , (1) 

 
Figure 1.  Joint representation of the PSD of each population in the 

training group.  

where N is the number of points in the band and fi each 
frequency component. Finally, WD is a disequilibrium 
measurement [18]. It reaches higher values if the spectrum is 
condensed into a narrow frequency band, whereas lower 
values are obtained if spectral components are distributed 
along frequencies: 

WD = arc cos{ PSDn ( fi ) 1 / N }
fi = f1

f2

∑ ,  (2) 

where PSDn  is the normalized PSD. 

C. Multiple linear regression 
Given the set of features x1, x2,...,xk extracted from AF 

data, the aim is to approximate the functional relationship 
between them and the AHI. Regression analysis using MLR 
was used for this purpose, being AHI the target variable. The 
following functional form is assumed for the approximation 
[14]: 

y = w0 + w1x1 + ...+ wkxk = wT x ,  (3) 

where w = (w0, w1,…,wk)T are unknown constant parameters 
computed according to sum-of-squares error minimization 
[14]. Thus, the MLR model assumes a linear relationship 
between the explanatory variables and the dependent one.  

In this study, w was computed from the training group. 
Then w was applied to the test group to validate the 
diagnostic ability of the model. Two MLR models were 
obtained: MLRfull was computed by using all the spectral 
features from the full PSD and MLRband was computed by the 
use of all the spectral features from the new band of interest. 

D. Statistical analysis 
The Pearson’s correlation coefficient ρ was used to 

evaluate the linear relationships between the AHI from PSG 
and the estimated AHI. It was also used to assess the linear 
correlation between the spectral features and the true AHI. A 
ρ value close to zero indicates poor linear relationship and ρ 
close to ±1 indicates high linear relationship. Sensitivity 
(percentage of actual positives correctly identified), 
specificity (percentage of actual negatives correctly 
identified) and accuracy (proportion of correct 
classifications) were used to assess the performance of the 

TABLE I.  DEMOGRAPHIC AND CLINICAL DATA  

 All subjects Training group Test group 

Subjects (n) 148 59 89 

Age (years) 50.9 ± 11.7 49.2 ± 11.3 51.9 ± 11.8 

BMI (kg/m2) 29.2 ± 4.7 28.3 ± 4.1 29.8 ± 5.0 

AHI 23.5 ± 24.1 19.1 ± 17.5 26.5 ± 27.4 
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AHI estimation when it is used to differentiate subjects 
among several degrees of SAHS severity. The agreement 
between the estimated AHI and the AHI from PSG was 
evaluated by means of a Bland-Altman plot.  

IV. RESULTS 

Table II displays the values of Pearson’s correlation 
coefficient ρ between spectral features from the test group 
and the corresponding AHI values from PSG. Most of 
features from the band of interest reached higher values of 
ρ  than the features extracted from the full PSD. The poorest 
value of ρ was reached by Mf2 (-0.009) whereas the highest 
value was reached by Mf1

a (0.672). 

Table III shows the Pearson’s correlation coefficient 
between true AHI and the AHI from estimators on the test 
group. MLRband clearly improves (0.809) the values of ρ 
reached by each of the features as well as by MLRfull. 

Fig. 2 shows the Bland-Altman plot comparing the 
estimated AHI for MLRband and the AHI from PSG (mean vs. 
difference). The mean of the difference (bias) reached a 
negative value (-1.18 e/h) near zero. The scatter plot indicates 
overestimation for small values of AHI and underestimation 
when the AHI is higher. The 95% limits of agreement (mean 
of the difference ± 1.96*SD of the difference) reached 30.71 
e/h and -33.07 e/h. 

Table IV summarizes the results of the MLRband model to 
distinguish the severity of SAHS. Four AHI cut-offs have 
been used (5, 10, 15 and 30 e/h). These correspond to 
common clinical thresholds. The accuracy increases as a 
more severity degree of SAHS is considered. The highest 
accuracy is achieved for a cut-off of 30 e/h (87.6%). The 
accuracy reaches 75.3% and 80.9% for 10 e/h and 15 e/h, 
respectively. The lowest value was performed for a 5 e/h 
threshold (69.7%). 

 
Figure 2.  Bland-Altman plot comparing the estimated AHI and the AHI 

from the PSG. 

TABLE II.  PEARSON’S CORRELATION COEFFICENTS BETWEEN SPECTRAL 
FEATURES FROM TEST GROUP AND AHI FROM PSG 

Feature ρ 
 Feature ρ 

 

Mf1 0.061 Mf1
a 0.672 

Mf2 -0.009 Mf2
a 0.560 

Mf3 -0.118 Mf3
a 0.293 

Mf4 -0.015 Mf4
a -0.082 

PA -0.010 PAa 0.632 

WD -0.294 WDa 0.669 

a. Features extracted from the frequency band of interest 

TABLE III.  PEARSON’S CORRELATION COEFFICENTS BETWEEN MLR 
ESTIMATIONS FROM TEST GROUP AND AHI FROM PSG 

AHI estimation  ρ 
 

MLRfull 0.381 

MLRband 0.809 

TABLE IV.  RESULTS FROM MLRBAND MODEL  

AHI thres. (e/h) 5 10 15 30 

Sensitivity(%) 100.0 95.0 93.5 76.7 

Specificity(%) 0.0 34.5 67.4 93.2 

Accuracy(%) 69.7  75.3  80.9  87.6 

V. DISCUSSION AND CONCLUSION 
The AHI was estimated applying MLR to spectral 

features from AF recordings. Pearson’s coefficient ρ was 
used to assess correlation between the spectral features, AHI 
from MLR models and AHI from PSG. The features 
extracted from a frequency band of interest (0.024-0.056 
Hz.) reached higher ρ than the features obtained from the 
full PSDs. Moreover, MLRband reached the highest 
ρ  (0.809). Both results suggest that this new frequency band 
of interest is highly related with apneic events. Furthermore, 
this band is consistent with pathophysiology since apneic 
events must last 10 seconds or more [5], i.e. their frequency 
must be located under 0.1 Hz. 

The agreement between the estimated AHI (MLRband) and 
the true AHI was evaluated by means of Bland-Altman plot. 
Results show an overestimation tendency as the mean is low 
and an underestimation tendency as the mean is higher. The 
behaviour of the Bland-Altman plot is reflected by the 
results from the assessment of estimated AHI ability to 
discriminate degrees of SAHS. Thus, the specificity reaches 
0% when the AHI threshold equals 5 e/h, resulting in poor 
accuracy (69.7%). However, accuracy increases (75.3%, 
80.9%, 87.6%) as the threshold is higher (10, 15, 30 e/h). 
This reflects an elevated ability to distinguish high degrees 
of SAHS severity.  

Several works are focused on AHI estimation by 
analyzing different data sets.  El-Solh et al. derived AHI 
from clinical and demographic data by using a multilayer 
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perceptron neural network (MLP) [19]. Magalang et al. 
computed AHI by the use of oxymetric indices as inputs to a 
multivariate adaptive regression splines (MARS) model 
[20]. Roche et al. obtained a MLR model combining both 
clinical and oximetry features [16]. In a previous study of 
our research group, Marcos et al. predicted AHI applying 
MLR and MLP to 14 features extracted from SpO2 
recordings [15]. For an AHI threshold = 15 e/h, the results 
from these studies range 61%-95% sensitivity, 60%-90% 
specificity and 62%-93% accuracy.  

Data obtained from SpO2 recordings indirectly shows the 
nature of apnoeic events. Nevertheless, AF waveform is 
directly modified by apneas and hipopneas. No studies have 
been found focused on AHI estimation through features 
from AF. However, some are focused on counting 
respiratory events and estimating RDI [9]-[12]. The 
performance of these works range 81%-86% sensitivity, 
83%-90% specificity and 0.73-0.95 Pearson’s correlation 
coefficient, for an AHI cut-off =15 e/h. 

Some limitations related with this work have to be pointed 
out. The number of subjects under study should be larger to 
assess the generality of results. Moreover, all subjects were 
suspected of having SAHS before PSG test. Non-suspected 
people should be added to the study in order to evaluate 
general applicability of the methodology. Another limitation 
is related with the use of a thermistor instead of a nasal 
prong pressure (NPP) sensor to acquire AF. Although the 
American Academy of Sleep Medicine (AASM) 
recommends the use of both types of sensors [6], it is known 
that NPP improves the performance of thermistor to detect 
obstructive respiratory events [21]. On the other hand, a 
different choice of the p-value threshold when computing 
the band of interest can change its length and, consequently, 
the final performance of the proposed method. Finally, the 
MLR used to estimate AHI assumes linear relationships 
between the explanatory variables and the dependent one. 
Therefore, other methods for the estimation of AHI should 
be used to assess the non-linear relationships with AF 
features. The use of artificial neural networks is a future 
goal for this purpose. 

In summary, a new frequency band of interest related to 
apneic events was defined. Spectral features from this band 
were used to obtain a MLR model and estimate AHI. The 
ability of the estimated AHI to distinguish SAHS severity 
was assessed by the use of different AHI cut-offs. For the 
thresholds AHI = 15 e/h and AHI = 30 e/h, accuracies over 
80% were achieved (80.9% and 87.6%, respectively). 
Therefore, the automated estimation of AHI through spectral 
features from AF recordings can provide useful knowledge 
about SAHS severity. 
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