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Abstract— We present the design and implementation of
an electronic device that, using off the shelf discrete analog
components, implements the mathematical model of a cold
receptor neuron called Huber-Braun. This model describes
the electrical behavior of certain kinds of receptors when
interacting with their environment, and it consists of a set of
differential equations that has only been solved by numeric
simulations. By these means a chaotic behavior has been found.
An analog computer can be relevant for further analysis and
validation of the model. The results obtained by means of
numeric simulations and through our analog circuit simulator
are consistent. In particular, temperature and external current
bifurcation diagrams were successfully built. Finally, the elec-
tronic device allows the observation of all relevant variables
and most of the expected behavior (tonic firing, chaotic, burst
discharge, subthreshold oscillation and steady state).

I. INTRODUCTION

Neuronal modeling with electronics circuits can help to
understand biological systems. Physical circuit implementa-
tion has several advantages. In the first place, circuits that
perform specific operations typically operate much faster
than general purpose ones. In the second place, it is possible
to interface a hardware implementation with biological tissue
or operate it with experimentally collected data in real time.
In the third place, it enables integration with robotics system
[1].

There are several types of models, despite the fact that
IF (integrate-and-fire) and QIF (quadratic-integrate-and-fire)
have low implementation cost, they have poor biological
plausibility. Izhikevich neuron model, recently implemented
in sub-threshold VLSI [2], has an excellent trade-off between
implementation cost and biological plausibility, but this
model is not biophysically meaningful [3].

The Huber-Braun model [4] is a Hodgkin-Huxley
conductance-based model [5]. These kinds of models are
important not only because their parameters are biophysically
meaningful and measurable, but also because they allow us to
investigate questions related to synaptic integration, dendritic
cable filtering, effects of dendritic morphology and other
issues related to single cell dynamics [3].

In addition, from the mathematical point of view, the
model equations state an interesting and complex problem,
that has not been formally solved. It has not been shown
which is the qualitative behavior (part of the complexity
is in the high dimension of the system). The behavioral
characteristics are just known through numerical simulations
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and experimental comparison. The variation of the Huber-
Braun Model parameters shows different types of behaviors
and bifurcations. In particular, there is some evidence that the
behavior for some areas of the parameters is chaotic. Since
numerical simulations were not able to show this chaotic
behavior, it is assumed that an analog implementation could
help [6][7][8][9].

This paper presents the development of an electronic
device, based on analog discrete components, that simulates
the Huber-Braun cold receptor neuron model. It is expected
that this analog simulator can be helpful in the biologi-
cal/neuroscience field, as well as in the mathematical one.

II. HUBER-BRAUN MODEL

The Huber-Braun model [4] is a Hodgkin-Huxley model
of the nerve endings of the skin superficial layer. The
modelled neuron is a cold receptor, which main function
is “to respond” to low temperatures. The temperature (T ) is
introduced into the model equations as a parameter. From the
physiological point of view, it is interesting to observe the
changes of the behavior that arise by varying this parameter.
This information is shown in the bifurcation diagrams. An-
other parameter of interest is the external current (Iext) that
represents the influence of the environment on the neuron.

The full set of equations of the Huber-Braun model are
the following:
• Membrane Potential

CM V̇ = −g(V − V1)− Id − Ir − Isd − Isr − Iext

• Fast Ionic Currents

Id = ρgdad(V − Vd); ad = ad∞

ad∞ = 1
1+e−sd(V−V0d)

Ir = ρgrar(V − Vr); ȧr = φar∞−arτr

ar∞ = 1
1+e−sr(V−V0r)

• Slow Ionic Currents

Isd = ρgsdasd(V − Vsd); ˙asd = φasd∞−asdτsd

asd∞ = 1
1+e−ssd(V−V0sd)

Isr = ρgsrasr(V − Vsr); ˙asr = φ−ηIsd−kasdτsd

• Temperature Scaling
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ρ = 1.3(T−T0)/10
oC ; φ = 3.0(T−T0)/10

oC

The Membrane potential equation includes the membrane
capacitance CM , the ionic currents Ii and a term asso-
ciated with losses for the transfer of ions, as well as a
conductance g and the equilibrium potential V1. The model
includes four membrane potential dependent ionic currents.
The depolarization currents are Id and Isd, fast and slow
respectively, and the repolarizing currents are Ir and Isr, fast
and slow respectively. The variables ai are called activation
variables of each channel. Those are the ones that determine
the dynamics of the opening and closing of the respective
channels, and tend to the respective ai∞, which are called
asymptotic activation variables. These last ones are sigmoid
type function and are explained in more detail in section III.

The differential equations system has only been studied by
numerical simulations and physical experiments. By these
methods it is known that the regime behavior is like an
oscillator for most of the parameters values. Furthermore, the
system can be seen as composed by two simpler oscillators,
one fast and one slow, which are coupled in a non-clear
sense. These subsystems arise by considering only the fast
or only the slow currents in each case.

The most important variable of the model and through
which the different behaviors are displayed is the membrane
potential. The neurons transmit information through the
spikes that occur in this variable. Therefore, the time between
two consecutive spikes, called ISI (Inter Spike Interval)
is a relevant magnitude to be measured. Moreover, the
bifurcations are easily appreciated through this magnitude.

There are three different areas depending on the temper-
ature: the period doubling area, the chaotic area and the
addition of ISI area.

For low temperatures the membrane potential presents a
regular regime of a single spike per period called tonic firing.
As the temperature increases more spikes per period appear,
initially with the same time of separation between them.
What happens here is that the orbit starts to travel twice
the distance at the same speed, doubling the period of the
signals. This is because the limit cycle after the bifurcation
appears to make two laps near the previous limit cycle before
closing. Therefore, it also doubles the number of spikes per
period, maintaining the value of the ISIs [8]. This type of
bifurcations will be called period doubling.

At the other end of the temperatures zone of interest a
different phenomenon is observed. For temperatures above
35oC the firing ceases and does not get to form spikes,
presenting first a sub-threshold oscillation and tending then
to a steady state. By decreasing the temperature, initially
there is a single spike per period, then the burst discharges
appears and the number of spikes increases. When a new
spike is formed the sum of the intervals between the spikes
is kept constant (and equal to the period) [8]. This type of
bifurcations will be called addition of ISI.

Between the two mentioned areas the chaotic behavior is
observed. This means that small variations of T produces

very perceptible variations in the qualitative dynamic behav-
ior of the system, observed by means of the ISI. In the
chaotic area bifurcations appear to fill out the parameter
region (see Figure 7).

When setting the temperature and varying the current
Iext, the same phenomenon as when varying the temperature
happens, which can be seen in the bifurcation diagram of
Figure 8.

III. CIRCUIT DESIGN

The design was made by considering all variables and
parameters of the model as voltages in the circuit. This led
to implement the model equations (section II) based on the
following basic blocks: Power, Sigmoid, Adder-Subtractor,
Amplifier, Integrator and Multiplier.

For the Adder-Subtractor, Amplifier and Integrator the
classic implementations with operational amplifiers were
used [10].

The multiplication was implemented with the AD633 of
Analog Devices which performs this operation with precision
and allows wide dynamic range both in inputs and outputs.

For the Power Function we adapted the design presented
in [11] by adjusting the exponent. This design is based on
the property: k log(a) = log(ak), where the logarithm of the
signal is calculated and then amplified.

A Sigmoid Function simulates two possible states and the
transition between them. The plot presents two asymptotes
and tends from one to the other. In this case, the expression
is:

s(x) =
1

1 + e−x
(1)

and the possible states (asymptotes) are 0 and 1. In the
model it represents a continuous way of turning ON and OFF
the ionic channels; open and close. To implement this block
we used a differential pair, whose response is: tanh(kx).
This is a Sigmoide type function, and is related to equation
1 as follows:

s(x) =
tanh(x2 ) + 1

2
(2)

Starting from equation 2, a circuit that responses like
equation 1 can be implemented with a differential pair by
adding amplifications and tension references (see figure 1).

Some of the implementations of the different equations
with these basic blocks can be seen in figures 2 and 3.

Once every basic block was designed we implemented
the whole system in a single board, obtaining an analog
simulator of the Huber-Braun model (see figure 4).

Finally, it is noteworthy that the design and the imple-
mentation developed are flexible in many aspects. Firstly, all
the variables of interest can be observed and the parameters
can be set in all the specified range (temperature between
0oC and 36oC, external current between 0.1A/cm2 and
1.4A/cm2). In addition, other parameters that are constant in
the model can be modified. Particularly, this is the case of the
poles that determine the time scaling (which is an advantage
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Fig. 1. Implementation of the Sigmoid Function with a differential
pair.

Fig. 2. Implementation of the equations of the ionic currents.

of analog simulators). In this way, the relation between the
speed of the simulator and the real system can be adjusted;
in our case, the simulator can be set up to 100 times faster
than the original system.

IV. RESULTS

Measuring the outputs of the circuit, we were able to ob-
serve the different behaviors of the membrane potential (tonic
firing, chaotic, burst discharge, sub-threshold oscillation and
steady state) by changing the values of the parameters.
Figures 5 and 6 show both the measures taken from the
circuit and the numeric simulations of the model made in
Matlab [12] for different states of the neuron. In these figures
the difference in the time scale can be seen.

In addition, bifurcation diagrams were successfully rebuilt
for both parameters (which can be seen in figure 7 and 8, for
T and Iext respectively). In order to do this, the membrane
potential was measured directly from the circuit for a great
number of parameter values with a digital oscilloscope, and
processed afterwards with Matlab.

Regarding the bifurcations, we were able to observe
clearly the addition of ISI, but because of the noise we
could not distinguish the first period doubling before chaos
is reached.

Moreover, the implemented system appears to be faster
than expected. A small deviation on the values of the poles
(of the activation variables) was found but does not seem to
explain the difference, neither does the difference in velocity

Fig. 3. Implementation of the equations of the activation variables.

Fig. 4. Implemented board

(comparing with the numeric simulations) of the slow and
fast oscillators that were analyzed separately. However, the
slow oscillator appears to be notoriously bigger in amplitude
than expected. We estimate that this can lead to an early reach
of the threshold level, increasing therefore the frequency of
the spikes when simulating the whole system.

The tests were performed at room temperature (ambient
temperature was not adjusted during the tests) and the board
was powered by a ±15V DC power source.

V. CONCLUSIONS

We developed an electronic device, based on analog
discrete components, that simulates the Huber-Braun cold
receptor neuron model. The results obtained by means of
numeric simulations and through our analog circuit simu-
lator are consistent. The electronic device built allows the
observation of all relevant variables and most of the expected
behavior (tonic firing, chaotic, burst discharge, sub-threshold
oscillation and steady state). In addition, bifurcation dia-
grams were successfully rebuilt for T and Iext.

The signals of interest (including the membrane potential
and the parameters) are presented as voltages in output pins,
and may be observed with an oscilloscope or a PC by means
of a data acquisition board. Furthermore, it is possible to vary
both parameters with presets in the specified range. Through
the membrane potential we were able to identify the different
states of the neuron and most bifurcations.
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V circuit

V simulations

Fig. 5. Chaos. Comparison between Matlab simulations (bottom)
and measures from the circuit (top).

V circuit

V simulations

Fig. 6. Burst discharges. Comparison between Matlab simulations
(bottom) and measures from the circuit (top).

Calibration presets were included to make an accurate
adjustment of the factors over which the system is more
sensitive. This makes it possible to study the dynamics when
changing values other that T and Iext. In addition, it is
possible to analyze the fast and the slow oscillators separately
by disconnecting the corresponding currents. Finally, the
time scaling is also configurable with presets allowing the
device to simulate the neuron dynamics in real time or faster.

An interesting future work would be to implement a neural
network of such model on VLSI technology with external
control of the relevant parameters.
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