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Abstract— This paper develops a Hill model based technique 

to estimate human elbow torque from sEMG measurements. 

Some new parameters are included in the optimization process 

in order to improve the resulting estimated torque. These 

parameters correspond to activation levels of muscles involved 

in motion generation. They have not previously been used in 

other works dealing with this kind of model. Results from 

experiments with several subjects in different movement 

conditions and using the new optimized parameters lead to 

some conclusions about the generality of the optimized models 

and the influence of the new parameters on the improvement of 

the estimation. 

 

I. INTRODUCTION 

Several works have developed different models to 
estimate the joint torques of human limbs for different 
movements. These range from blackbox models (i.e. Neural 
Networks [3]) to more physiological-based models whose 
parameters have a physiological sense. Here we focus on the 
Hill model corresponding to the latter kind. The parameters 
can be modelled and tuned using physiological reasoning.  

Motor rehabilitation progress can be improved by using 
assistive robotic exoskeletons in order to perform exercises 
under the assist-as-needed paradigm. This is one of the 
objectives of the HYPER project [9] in which we are 
involved. A Neuroestimator will process different kinds of 
neural and biological signals in order to control the robot 
under that paradigm. The robot will only provide the 
assistance level defined by the therapist. This will partly 
depend on the force/energy that the subject can exert, which 
has to be estimated. One of the modules of this 
Neuroestimator will be the human Joint Torque Estimator 
from sEMG sensors. A precise and adaptive model is 
necessary to achieve this goal. This is the focus of this paper. 

During recent years various works for tuning and 
experimenting with exoskeleton control have been carried out 
using Hill models [4, 7]. In [8] an optimization method is 
proposed for tuning some Hill parameters such as joint angles 
included in the model, although other physiological 
parameters are not dealt with. [10] describes a two-step 
optimization technique to estimate force muscles from EMG, 
focusing on a comparison between two techniques and on 
some physiological-based constraints on the parameters. 
However, usually only a few model parameters have been 
tuned or optimized and experiments have been limited to one 
subject with limited motion conditions.  
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In this work, we attempt to obtain more general 
conclusions about the best model parameters to be used and 
tuned using several subjects under different exercise 
conditions, including the fatigue situation. 

The paper is structured as follows: Sec. II introduces the 
muscle model and the parameter optimization approach. The 
objectives, experimental protocol, equipment, and set up to 
be validated are described in Sec. III. Sec. IV presents the 
results. The paper is concluded in Sec. V. 

 

II. JOINT TORQUE ESTIMATION FROM HILL MODEL 

A crucial issue when studying generated muscle forces is 
to choose a suitable muscle model. Hill-based (HB) models 
are well-known for appropriately representing muscle 
behaviour. Among the various HB model formulations, one 
of the most consistent was that used in [4]. This also takes 
into account force-length (fl) and force-velocity (fv) muscle 
relationships. Moreover, its parameters have a physiological 
meaning, unlike those based on neural-networks. This allows 
new parameters to be included in accordance with 
physiological models, thus enabling better torque estimation.  

A.  Hill model and parameters 

The force equations are [4, 7]:  
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where the muscles are modelled as composed of contractile 
(CE, active part), parallel elastic (PE, passive part), and series 
elastic (SE, passive part) elements. In [4] these functions are 
reported in detail. SPE and SSE denote the shape factor, LC0 the 
optimal fibre length, LTS the tendon slack length, u the 
normalized muscle activation, . the % of fast contractile 
fibres, Fmax and Lmax the maximal force and length, and ûL 
the length variation with respect to the slack length. In this 
work, we estimate from this model the elbow torque in 
flexion/extension movements from the agonist and antagonist 
muscles involved. In order to select the muscles that 
contribute most to elbow moment, we used Opensim 
software [1]. From this we obtained the parameters Lmax, LC0, 
LTS, and  Fcemax, corresponding to the data coming from [2], a 
complete model of the upper limb.  We also used muscle 
tendon lengths and moment arms from this experimental 
research as data in our model. The parameters ., SPE, and SSE 
were taken from [4]. 
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Previous papers on this subject [4] only consider in the 
model a subset of muscles to be activated. Here we add new 
muscles to the previously considered, Biceps Brachi long 
head (BIClong), Biceps Brachi short head (BICshort), 
Brachioradialis (BRD), Brachialis (BRA), Triceps Brachii 
long head (TRIlong), Triceps Brachii lateral head (TRIlat) 
and Triceps Brachii medium head (TRImed). The new 
muscles are Anconeus (ANC), Extensor Carpi Radialis 
Longus (ECRL), Flexor Carpi Radialis (FCR) and Pronator 
Teres (PT), whose activation provide new parameters to be 
optimized. Since some important muscles in the arm and 
forearm are not superficial, and therefore we are unable to 
measure their electrical activity, we have assumed BIClong, 
BRA, ANC and PT activity to be respectively the same as 
their neighbouring muscles, BICshort, BRD, ECRL and FCR, 
but taking into account a scaling factor (based on muscle 
synergy theory [7]). 

B. Parameter Optimization 

An optimal tuning of parameters is achieved. The method 
fits the estimated elbow torque with that measured with a 
force sensor placed on the forearm. A nonlinear ‘trust-region-
reflective’ [5] algorithm from the Matlab Optimization 
toolbox is used to solve curve-fitting problems in the least-
squares sense (‘lsqcurvefit’ matlab function). Some values of 
the lower and upper interval limits for the parameters are 
taken from [4]. In our approach, there are 60 parameters to be 
optimized, 5 for each muscle and 5 global factors (BIClong, 
BRA, ANC and PT activation factors and a scale factor). 
Note that the new added parameters correspond to the u 
activation levels for the new globally considered muscles in 
the model. 

 

III. OBJECTIVES AND METHODOLOGY 

A. Objectives 

The general objective of this work is designing optimal 

elbow torque estimators from sEMG signals and elbow 

flexion/extension movements. The three main specific 

objectives are achieving more general models which are: i) 

valid for different movement conditions (resistance levels 

imposed on the arm, relaxed or fatigue situations, different 

movement parameters); ii) tuned for different people; iii) 

take into account the influence of the new parameters on the 

accuracy of the model to estimate the torques. 

B. Subjects 

The experiments were carried out with four male 
volunteer subjects, between 25 and 31 years old, of average 
weight and height of 78 ± 15.75 Kg and 1.75 ± 0.05 m 
respectively. 

C. Equipment and Data Acquisition  

KENDAL Meditrace 200 EMG sensors were used, placed 
in accordance with to SENIAM recommendations (European 
project: Surface EMG for Non-Invasive Assessment of 
Muscles) on 8 muscles (Fig.1). The signals were amplified 
using a commercial gTec system. The EMG was digitized at 
a sampling frequency of 2.4KHz, power-line notch-filtered at 
50Hz, and bandpass filtered at 5/500Hz. Signals were 

captured and filtered through a Simunlink Highspeed On-line 
Processing system from gTec with a bipolar configuration. 

A LWR KUKA robot (Fig.1) was used as an 
experimental exoskeleton, with 7 degrees of freedom and an 
ATI Gamma force/torque sensor placed on the end-effector, 
to estimate the real elbow torque from real measurements. 
This torque was used to be compared with that obtained by 
our estimator. Moreover, the robot provided the kinematics 
needed for the model: joint angles, velocities and 
accelerations.  

 

Figure 1.  On the left: EMG sensors placement. On the right: Testing 

conducted using a LWR KUKA robot attached to the middle of the forearm 

C. Data Processing 

Converting sEMG to neural activation required: 1) a 
Butterworth 4th order high-pass filter (cut off frequency 
30Hz); 2) full wave rectification; 3) a Butterworth 4th order 
low-pass filter (cut-off frequency 6Hz); 4) normalization with 
respect to maximal voluntary contractions. 

Since the robot was attached to the middle of the forearm, 
we had to transfer the measured force and torque to the elbow 
joint based on using rigid solid techniques. 

D. Experimental Protocol 

The nominal trajectory movement was established as a 
flexion/extension of one degree of freedom corresponding to 
the elbow joint (0-110º range). The patient attaches the upper 
arm to a fixed structure and the forearm to the robot’s end-
effector to ensure an exclusive flexion/extension of the elbow 
(forearm movement). The processing in this experiment 
consists of four major stages: 

x Isometric Maximal Voluntary Contraction (MVC) 
session: capturing MVC of different arm muscle 
groups according to SENIAM. 

x Dynamic non fatigue session: performances of the 
movement guided by robot 0% assisted but with 3 
different strength levels of movement opposition 
(50%, 75%, 98%). Three flexion/extension 
movements are performed for each level of resistance 
force.  

x Isometric fatigue session: the subjects had to hold a 
dumbbell in a 90ª flexion position for as long as they 
could in order to create fatigue in the flexion muscle 
groups. 
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x Dynamic fatigue session: promptly after the 
isometric fatigue session the subjects perform the 
same exercises as in the dynamic non fatigue session. 

 

IV. RESULTS 

 Fig. 2 represents the torque measured by the force 

sensor on the end-effector of the robot and the torque 

computed by the estimator for one subject and one exercise. 

It corresponds to one out of 3 trials for subject 2 in the 50% 

resistance level condition. 

 

 
Figure 2.  Blue line is the joint torque values measured by the robot force 

sensor. Red line is the Hill- model estimation. 

For each subject, one flexion/extension movement of the 
75% robot resistance level trial was used to optimize the 
model, and the other data collected were used to validate the 
modelling and tuning. The results shown in Fig.3 are the 
mean and standard deviation of the root mean squared error 
(Erms) and maximum error (Emax) for the 3 captured trials of 
each movement condition as described in the experimental 
protocol. Both non fatigue and fatigue conditions were tested. 

Regarding the resistance level in non fatigue conditions, 
the model fits in all cases, but there seems to be a growing 
increase in the error with the increase in the level of robot 
resistance. However, it should be noted that there is also an 
increasing excursion (peak to peak value) of 7.8 ± 0.23 Nm, 
7.94 ± 0.89 Nm, 8.37 ± 0.41 Nm for the 25%, 50% and 98% 
resistance conditions respectively. Therefore, the relative 
error values (for instance, 0.62, 0.68, 0.65 in Emax for subject 
1 at 50%, 75% and 98%) are maintained for the different 
conditions. The movement was performed at 0.3 ± 0.1 rad/sg. 
Even though previous works have shown that this model 
provides worse estimations for slow velocities, the errors 
here are lower than those presented in [7] for equivalent 
velocities. 

In relation to the fatigue condition, although the model 
seems to be adjusted, if we consider the torque excursion in 
this conditions, 3.98 ± 0.28 Nm, 5.65 ± 1.54 Nm, 6.47 ± 0.42 
Nm for 25%, 50% and 98% resistance, respectively, a 
decrease in torque generation with muscle fatigue can be 
appreciated. Thus, in terms of normalized values, the results 
lead to an increase in error. 

Although the errors are acceptable compared to related 
works, further analysis will be necessary to determine how 
these errors in the limb moment estimation should be 
managed in assistive exoskeleton control. 

 
Figure 3.  Mean and standard desviation of Emax and Erms for different 

conditions (25%, 75%, 98% robot resistance). NF denotes non fatigue and F 

fatigue conditions. 

In order to analyze whether the model is general or has to 
be tuned for each individual, we have presented the statistical 
data relating to 3 subjects at 75% resistance level (non fatigue 
conditions) with 3 different parameters. The results are 
shown in Fig. 4.  

 
Figure 4. Erms for the different subjects (S1, S2, S3)  comparing different 

sets of optimized parameters: their own optimized set, those with respect to 

those of S4, and using an average value of the optimized parameters.  

As can be expected, we achieved the best results 
optimizing the model for each person. However, if we use 
mean optimal parameters of the population, we obtain 
sufficiently good results to consider that the same average 
parameters can be used for different subjects. Moreover, it is 
worth noting that the error is worse when we test the model 
with the parameters optimized for another subject (subject 4 
in this case).  
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The authors believe that the reason why subject 2 has 
worse statistical results is due to the limits of the tuning 
parameters. The best optimal parameters for this subject are 
out of the bounds. Increasing the bounds in the optimization 
phase would lead to better optimal parameters for this subject 
and the statistical results would be improved: 1.92 ± 0.52 Nm 
with extended bounds instead of 2.42 ±0.43 Nm in the case 
of 75% resistance level in non fatigue conditions. Whereas 
the mean decreases considerably and reaches magnitudes 
similar to subjects 1 and 3, the standard deviation maintains 
its value. 

Fig. 5 shows a comparison of the results when the 
activation levels of the proposed group of 11 muscles are 
used as parameters with respect to the 7 suggested in [4]. 
Naturally, if we take into account more muscles that 
contribute to the torque in a joint, we clearly improve the 
accuracy of the torque estimation.  

 
Figure 5. Mean and standard deviation of the maximum error and the root 

mean squared error of 11 muscles compared with 7 muscles. 

V. CONCLUSION AND FUTURE WORK 

This research has shown the influence on the 
improvement of the joint torque estimation of new 
parameters with a physiological sense, included in the Hill 
model from sEMG for different movement conditions. 
Experiments were carried out on four subjects. 

The results indicate that a general muscle model is 
possible for a population group with similar physiological 
characteristics (as in this study). To deal with the 
heterogeneity of the population, in a physical sense, the 
authors believe that the population can be clustered into 
groups and that a ‘bank’ of sub-optimal parameters can be 
provided for each group instead of each person. This could 
represent a breakthrough in rehabilitation engineering as it 
would reduce the tedious task of calibrating the model for 
different people. The study also shows that the inclusion of 
new parameters corresponding to the activation level of 
muscles involved in the motion, not considered in previous 
works, improve the Joint Torque Estimator. 

The proposed model is capable of estimating torque for 
different resistance conditions with a low margin of error 
even at low velocities. However, in fatigue conditions the 
approach can be improved. There are already studies in this 

line of research [11]. Muscular fatigue will appear during 
rehabilitation sessions and the model could be required to 
cope with this change in sEMG signals.  

Since testing data from four subjects is insufficient for 
drawing universal conclusions, future work will include 
larger populations, and will include discussions about trends 
and patterns of each muscle in detail. Moreover, we will 
extend the study design models for other rehabilitation 
movements for upper and lower limbs (such as reaching and 
walking). Similarly, we will include more muscles in the 
torque estimation study. We will also extend the 
methodology to disabled people with different kinds of motor 
disorders and different degrees of motor capabilities. These 
models will be used in the Neuroestimator for assist-as-
needed exoskeleton control. 
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