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Abstract— Technology utilized to automatically monitor Ac-
tivities of Daily Living (ADL) could be a key component
in identifying deviations from normal functional profiles and
providing feedback on interventions aimed at improving health.
However, if activity recognition systems are to be implemented
in real world scenarios such as health and wellness monitor-
ing, the activity sensing modality must unobtrusively fit the
human environment rather than forcing humans to adhere
to sensor specific conditions. Modern smart phones represent
a ubiquitous computing device which has already undergone
mainstream adoption. In this paper, we investigate the feasi-
bility of using a modern smartphone, with limited placement
constraints, as the sensing modality for an activity recognition
system. A dataset of 4 subjects performing 7 activities, using
varying sensor placement conditions, is utilized to investigate
this. Initial experiments show that a decision tree classifier
performs activity classification with precision and recall scores
of 0.75 and 0.73 respectively. More importantly, as part of
this initial experiment, 3 main problems, and subsequently 3
solutions, relating to unconstrained sensor placement were iden-
tified. Using our proposed solutions, classification precision and
recall scores were improved by +13% and +14.6% respectively.

I. INTRODUCTION
Monitoring the quantity, quality and variety of physical

activity of the elderly and patients with particular chronic
diseases can be a key component in identifying deviations
from normal functional profiles and providing feedback on
interventions aimed at improving health. However, the poten-
tial of physical activity measurements in the treatment and
promotion of health and wellbeing cannot be fully realized
until objective and accurate methods of measuring physical
activity can be developed. Physical activity has traditionally
been assessed by questionnaires but these have limitations
due to their inherent subjective nature and caution must be
taken when using questionnaires to identify activities [1].
A solution to this problem is to measure physical activity
using body-worn sensors to automatically detect and measure
particular activities. However, in order implement activity
analysis in real world scenarios such as health and wellness
monitoring, the activity sensing modality must unobtrusively
fit the human environment rather than forcing humans to
adhere to sensor specific conditions. One potential unobtru-
sive modality which is already being used naturally in the
human environment is the mobile phone. A number of works
have conducted research into the problem of physical activity
classification. Liu et al. [2] and Gao et al. [3] propose multi-
sensor systems in order to monitor physical activity. While
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results were very positive in both these works, the main
downside was that subjects were required to wear invasive
sensing devices. There have been other studies on devel-
oping activity recognition systems using a phone, or single
motion sensor, but most of these works assume the motion
signals are recorded from a known fixed device location and
orientation [4]. This means that limitations and/or specific
conditions are forced on the user of the system, requiring
users to use their phone in a manner that is un-natural
for them and could result in low adherence/participation in
the activity monitoring application. Lester at al. [5] and
Henpraserttae et al. [6] have addressed the problem of
unconstrained sensor placement, but neither works address
the problem of position variation and orientation variation
at the same time. In this work, we investigate the effect of
placing sensors at arbitrary locations and orientations has on
activity classification.

II. METHODOLOGY
A. Sensor

In order to collect phone motion data, we use a Samsung
Nexus S smartphone running the Android 2.3 operating
system. Acceleration data, Ax, Ay and Az along with
gyroscope data, Gx, Gy and Gz , are recorded from the
phone. A Kalman filter is used to calculate orientation angles
θ and φ by measuring orientation from the gyroscope and
utilizing the accelerometer to minimize any drift error that
the gyroscope creates. A quaternion representation of the
device orientation, defined as q = {qw, qx, qy, qz}, is calcu-
lated in order to overcome ambiguities which are inherent
in the Euler angle measurements. We also define the overall
magnitude of the acceleration as Am =

√
A2
x +A2

y +A2
z

and the overall magnitude of the angular velocity as Gm =√
G2
x +G2

y +G2
z .

B. Activity Data

In order to evaluate how an activity recognition system
would perform with sensor data from varied phone positions
and orientations, we collected data from 4 subjects perform-
ing 7 different activites using two phones per subject. The
7 chosen activities are as follows: (1) Standing (SN), (2)
Sitting (ST), (3) Transition Down (TD), (4) Transition Up
(TU), (5) Stairs Up (SU) (6) Stairs Down (SD) and (7)
Walking (W). We chose these activities due to our overall
application goal which is to accurately assess the patterns of
daily activity of patients. One of the most important aspects
of this is identifying sedentary behavior, therefore the need
to distinguish between walking, standing and sitting/lying
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is important. Detecting changes in stair usage could also
be key in identifying loss or gain of physical function.
We introduce the activities, ’Transition Up’ and ’Transition
Down’ as transitional activities which could potentially be
utilized to improve the accuracy of distinguishing between
sitting or standing. The selection of these 7 activities are also
consistent with other works in the area where an average of
6 activities are used [7], [8], [9], [6]. For each subject, one
phone was placed somewhere on the torso and one phone
was placed on the lower body. It should be noted that the
goal is not to combine data collected from both phones to
make a single classification. We utilize two phones in the
data collection in order to collect a data set of activities that
included data from varied body locations. For each subject
the orientation and positioning of the phones were varied.
Torso position varied the most due to more varied pocket
positions of upper body clothing. Figure 1 shows an overview
of the different phone placements. Each box represents the
placement of a phone.

Fig. 1. Phone Locations

In order to collect
a labeled set of activ-
ity data to train and
test the different mod-
els, we developed a ’Re-
mote Labeler’ App for
an Android Phone. A
researcher controls the
’Remote Labeler’ while
monitoring the subject
performing the different
activities in a natural
manner. The researcher
presses pre-set activity buttons when the subject performs
one of the corresponding pre-determined activities. The ’Re-
mote Labeler’ App then sends these labels over Bluetooth
to the Sensor App, and the Sensor App logs these labels.
We extracted features from the data set at intervals of
0.25 seconds (i.e. 4 classifications per second). The average
duration of the activities which were recorded for each
subject are as follows: Walking - 13 mins, Sitting - 3 mins,
Standing - 6 mins, Stairs Up - 3 mins, Stairs Down - 3 mins,
Transition Up - 1 min, Transition Down - 1 min. A total of
2 hours of data was collected across all subjects.

C. Feature Extraction

In order to measure the users activity at a given time t,
a sliding window system is used. A time t, a number of
different features are calculated based on the accelerometer
signals A, the gyroscope signals G and the orientation q.
Features are extracted from windows of different lengths
in order to capture information on activities of different
durations. We calculate a set of features based on the
following measurements:
µ(x): Mean of signal x. σ(x): Variance of signal x -

helps discriminate between static and dynamic activities.
RMS(x): Refers to the Root mean squared of signal x and
discriminates between different Static Activities. IQR(x):

Refers to the Interquartile range of signal x. IQR of Gyro
is important for identifying transitional activities. MFC(x):
Refers to the Main frequency component of signal x as
computed by a Fast Fourier Transform. LPF<2.5Hz(x):
Refers to the signal x which has been passed through a
Low Pass Filter. Discriminates between different dynamic
activities. BPF1.6−4.5Hz(x): Refers to the signal x which
has been passed through a Band Pass Filter. Discriminates
between different dynamic activities. Ê(x): Refers to the
energy of signal x. Corr(x, y): Refers to the correlation of
signals x and y as calculated using the Pearson Correlation.
Correlation between vertical and horizontal acceleration is
important for identifying stair climbing.

A combination of these measurements, calculated from
different motion signals, makes up a feature vector. Applying
the 9 measurements to the 4 Acceleration signals, 4 Gyro-
scope signals and 2 orientation signal results in a set 90
features (9 × (4 + 4 + 2)). We calculated these 90 features
for windows lengths of 32, 64, 128 and 256, resulting in a
total set of 360 features. In order to reduce this, we used
an Information Gain Attribute Evaluation (IG) technique in
order to evaluate the worth of each feature by measuring the
information gain of each feature for each activity class [10].
Each feature was ranked by information gain and the top 50
features where chosen.

III. EXPERIMENT

In this section we investigate how an activity recognition
system performs when subjected to data recorded from
phones at different location and orientations. For each experi-
ment described, a Leave One Subject Out (LOSO) evaluation
protocol is used where each classifier is trained using data
from 3 of the 4 subjects and tested using data from the
remaining subject. This process is repeated for all combi-
nations of subjects and the average performance is reported.
Works on activity recognition report that identifying the best
classification algorithm is dependent on the type of sensors,
features and activities being used [11][12]. We therefore
performed a preliminary experiment in order to identify a
suitable model for the classification of data from a phone
with unconstrained placement conditions. The preliminary
experiment involved evaluating the following models on
our data set: C.45 Decision Trees, MultiLayer Perceptrons,
Logistic Regression, Bayes Network and Support Vector
Machine (with a RBF kernel). Results showed that a C.45
Decision Tree was the best performing model and therefore
is the model used in the following experiments.

A. Unmodified Features Evaluation

In the first experiment we evaluate how the classifier
performs when trained and tested on all data collected from
our data set. Feature vectors, comprising of the 50 features
selected using IG feature selection, were computed for all
data in the data set and then used to train and test the decision
tree. Results detailed in Table I show that the classifier
performs well when identifying walking while the remainder
of the activities were classified with poorer performance.
From these results we can see that the classifier has difficulty
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in learning how to discriminate between activities with more
subtle differences. This can most likely be attributed to
the fact that features, which could potentially discriminate
between certain activities, have a large variation across
the entire dataset due to the unconstrained position and
orientation of the sensor.

1) Position Specific Classifier: In an attempt to reduce
variation in the features caused by the unconstrained location
conditions of the sensor, the data set is split up into 2 position
specific data sets; 1) data from lower body and 2) data from
the torso. Two position specific classifiers were then trained
using the corresponding position specific data. Results, as
detailed in Table I, show that the lower body classifier per-
forms much better than the torso specific classifier. This can
be attributed to the fact that less motion occurs in the upper
body and therefore results in more discriminate patterns for
particular activities. While distinct motion patterns for each
activity do occur in the torso, the unconstrained sensor, and
in particular the unconstrained orientation, results in the loss
of discriminatory information such as movement in a specific
direction. A second observation made from these results is
that the performance of identifying sitting relating activities
is, for both classifiers, very poor. Upon further investigation
of the classification results it was discovered that a significant
amount of sitting related activities were being mis-classified
as standing. This is caused by the fact that no reference point
exists in order to discriminate between a standing orientation
and a sitting orientation due to the unconstrained orientation
of the sensor.

TABLE I
SPECIFIC RECOGNITION PERFORMANCE

All Positions: Torso: Lower Body:
Activities Precision Recall Precision Recall Precision Recall

W 0.884 0.868 0.87 368 0.878 0.984
SN 0.753 0.7 0.847 0.442 0.775 0.983
TD 0.748 0.433 0.764 0.6 0.861 0.311
ST 0.669 0.716 0.552 0.916 0.628 0.766
TU 0.504 0.61 0.599 0.364 0.358 0.6
SU 0.343 0.579 0.194 0.954 0.746 0.617
SD 0.651 0.45 0.432 0.168 0.8 0.399

Total 0.75 0.736 0.725 0.533 0.851 0.835
Combined Precision: 0.788
Combined Recall: 0.684

B. Solutions

In this section we propose solutions to each of three prob-
lems identified in Section III-A followed by final experiment
in order to evaluate the potential solutions.

(Problem 1): Large variations in potential discriminatory
features occur due to difference in movement patterns be-
tween torso and lower body. To solve this problem we
suggest that a two stage classification system be used where
two position specific classifiers learn to classify activities
from their corresponding positions. A location classifier,
which we will evaluate in a later experiment, can be used
to first classify the location of the sensor. The appropriate
position specific classifier can be used to classify the activity.

(Problem 2): Unconstrained sensor orientation results in
the loss of useful information such as movement in a partic-
ular direction. In order to solve this problem, a measure of

motion, independent of sensor orientation, is required. This
is performed by computing a global reference frame in order
to measure acceleration with respect to gravity as opposed
to a local reference frame which measures acceleration with
respect to the sensor device. A rotation matrix Rθφ is
computed from the orientation quaternion and the global
acceleration frame is defined as Ā = A × Rθφ, where A =
{Ax, Ay, Az}. The acceleration vector Ā now represents
acceleration relative to gravity. The vertical component of
the acceleration Av can now be defined as Av = Āy . Yaw
information is not utilized is this work due to the presence of
noise in he yaw signal caused by ferromagnetic interference.
We therefore have no representation of which direction the
phone is pointing on the horizontal plane and therefore
cannot disambiguate the remaining signals, Āx and Āy , into
dorsoventral and mediolateral (forward and sideward) direc-
tions. We must therefore combine these signals into a single
horizontal acceleration component Ah =

√
(Āx)2 + (Āz)2.

(Problem 3): Discriminating between sitting and standing
is difficult due to the fact that we do not have a constant
reference point as to what orientation refers to standing and
what refers to sitting. To overcome this problem we propose
that an additional feature, Diff(q, qstand), be used. This
feature refers to the mean difference between the current
quaternion q and a dynamic reference quaternion qstand over
the period of a feature window. The dynamic reference point,
qstand, is a quaternion which is automatically updated to
represent the current best estimate of a standing orientation.
If a ’Walking’ activity is detected then we know the user must
be in a standing position. We can therefore use the orientation
signals during the ’Walking’ period in order to compute
a representation of a standing orientation. The standing
orientation, qstand, is calculated by analyzing all features
since the current walking activity was first detected in order
to find a 0.25 second window with the lowest acceleration
variation. We perform this analysis in order to find the most
stable stance phase during the walking period between each
heel strike and toe off. This process is particularly important
when the user has placed the phone on the lower body as
the stance phase of a walking gait is the period which most
resembles a lower body standing posture. Using the window
with the lowest acceleration variation, qstand is then defined
as the average quaternion from all orientations within that
window

C. Solution Evaluations

In order for the solution to problem 1 to be applicable,
the location of the sensor must first be identified such that
the appropriate position specific classifier can be invoked.
An experiment was conducted in order to evaluate how a
classifier would perform when identify the location of the
phone. Particular motion features from the torso and lower
body differ during periods of walking activity and this can
be taken advantage of in order to detect the phones location.
The location of the phone is classified by training a single
classifier to discriminate between the activities: ’Torso Walk-
ing’ (WT), ’Lower Body Walking’ (WL) and ’Not Walking’
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(NW). The goal here is to detect not only if a walking activity
is occurring, but also to identify if the walking signal was
recorded from a phone placed on the torso or the lower body.
If an ’Other’ activity is detected then it is assumed that the
position of the phone has not changed since the last phone
location detected and a location specific classifier is used
to detect what the ’Other’ activity is. Location classification
results, detailed in Table II, indicate that even though there
are some errors in the classification process, the identification
of the phone locations is robust with only 1% of the classified
WT or WL positions receiving a false positive classification.

TABLE II
POSITION RECOGNITION PERFORMANCE

Classified As:
Position NW WL WT

NW 0.95 0.02 0.03
WL 0.049 0.941 0.009
WT 0.087 0.0011 0.932

Finally, in order to evaluate the effect that the proposed
solutions have on the overall classification process, the new
measurements are first incorporated into the overall set of
features. Vertical and horizontal acceleration and standing
difference are calculated over windows length of 32, 64, 128
and 256 producing an additional set of 12 features. These 12
features where appended to the already existing set of 360
possible features. As with the original feature vector, the
final set of features to be used in the classification process
was identified by using a information gain feature selection
process. Each feature was ranked by information gain and
the top 50 features where chosen. The features are evaluated
using the same protocol as discussed in Section III-A, where
an overall classifier and two position specific classifiers
are trained and tested. Table III details the results of the
evaluations. The improved performance (+3.6% Precision,
+6.4% Recall) of the position specific classifiers, compared
to the overall classifier, show the positive effect our solution
to problem 1 has on the classification performance. The
solutions to problem 2 and 3 also have a positive effect on
the classification performance. It can be seen that there is a
significant performance increase (+9.2% Precision, +19.8%
Recall) in the position specific classifiers when compared to
the position specific classifiers evaluated on features with no
global reference or dynamic standing features. In particular,
there is a significant performance increase (+32.7% Preci-
sion, +11.3% Recall) in classifying sitting activities. Finally,
the poor performance of the torso specific classifier has
also been significantly improved upon (+10.5% Precision,
+29.7% Recall).

TABLE III
RECOGNITION PERFORMANCE

All Positions: Torso: Lower Body:
Activities Precision Recall Precision Recall Precision Recall

W 0.912 0.83 0.803 0.916 0.955 0.989
SN 0.892 0.923 0.92 0.9 0.999 0.973
TD 0.75 0.535 0.748 0.433 0.767 0.444
ST 0.937 0.86 0.896 0.909 0.939 0.999
TU 0.656 0.677 0.504 0.559 0.654 0.459
SU 0.32 0.532 0.861 0.374 0.748 0.696
SD 0.485 0.589 0.368 0.326 0.724 0.707

Total 0.844 0.818 0.83 0.83 0.93 0.934
Combined Precision: 0.88
Combined Recall: 0.882

IV. CONCLUSION

This paper investigates the feasibility of utilizing a mobile
phone, with limited placement conditions, as a sensor for
non invasive activity recognition. Through experiments, three
main problems that occur, when classifying activities using
data from a sensor with unconstrained position and orien-
tation, where identified. Moreover, three potential solutions
for these problems were suggested and experiment results
show that by utilizing these solutions, the overall classi-
fication performance can be significantly increased. These
results show that activity classification can be carried out
without using invasive sensing modalities. Future work will
involve increasing the number of subjects for evaluation, the
number of activities to be classified as well as investigating
techniques to further increase performance. Since human
activities occur in a temporal sequence, certain temporal
restrictions are placed on the order a set of activities can
occur in. Future work will also include adding a temporal
classification stage to the system in order to take advantage
of the temporal nature of human activities.
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