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Several recent studies have proposed to develop 
quantitative techniques for continuous assessment of 
cognitive effort and workload by investigating the 
neurobiological mechanisms underlying EEG brain dynamics. 
Precisely, shifts in a subject's level of drowsiness, as indexed 
by changes in their task performance in sustained-attention 
experiments, were positively correlated with changes in 
occipital theta [10, 12] and alpha [12] power.  

Abstract—Research on public security, especially the safe 
manipulation and control of vehicles, has gained increasing 
attention in recent years. This study proposes a closed-loop 
drowsiness monitoring and management system that can 
estimate subjects’ driving performance. The system observes 
electroencephalographic (EEG) dynamics and behavioral 
changes, delivers arousing feedback to individuals experiencing 
momentary cognitive lapses, and assesses the efficacy of the 
feedback. Results of this study showed that the arousing 
feedback immediately improved subject performance, which 
was accompanied by concurrent theta- and alpha-power 
suppression in the bilateral occipital areas. This study further 
demonstrated the feasibility of accurately assessing the efficacy 
of arousing feedback presented to drowsy participants by 
monitoring the changes in their EEG power spectra. 

Research has also attempted to assist individuals in 
combating drowsiness and/or preventing lapses in 
concentration. Dingus et al. [13] and Spence et al. [14] 
proposed using warning signals to maintain drivers’ attention. 
The warning signals could be auditory [14, 15], visual [16], 
tactile [17] or mixed [16]. Belz et al. [18] compared the 
efficacy of these warning signals and showed that drivers 
were less sensitive to visual alarms since they needed to pay 
attention to road conditions and the dashboard. Lin et al. [19] 
demonstrated that arousing tone-burst signals could help 
subjects to maintain their driving performance level. 
However, these studies mainly focused on the effects of 
arousing signals on behavioral performance. More recently, 
Jung et al. [21] explored EEG dynamics and behavioral 
changes in response to arousing auditory signals presented to 
individuals experiencing momentary cognitive lapses during 
a sustained-attention task. This study extends their study to 
propose a drowsiness monitoring and management (DMM) 
system that not only monitors the level of drowsiness and 
delivers arousing feedback to the drowsy drivers, but also 
assesses the efficacy of arousing feedback presented to the 
drowsy brain based on the EEG spectra. 

I. INTRODUCTION 
Driver fatigue, drowsiness and inattention were 

considered the leading causes of car accidents [1-4]. Early 
detection of drivers’ fatigue to sustain their cognitive 
capability and prevent accidents is highly desirable. 

During the past few years, the public security has become 
an important issue, especially the safe manipulation and 
control of vehicles for preventing the growing number of 
traffic accident fatalities. Considering the issue of detecting 
driver’s drowsiness, many studies measured physiological 
changes such as eye blinking, heart rate, or skin electric 
potential, and electroencephalogram (EEG), as a means of 
detecting human cognitive state [1-10]. For example, reports 
have shown that the human EEG could provide abundant 
information about the cognitive states such as alertness and 
arousal of individuals [1-2]. This study examines the 
feasibility of using the EEG to develop cognitive-state 
countermeasures for drowsiness detection and management.  

II. A DROWSINESS MONITORING AND MANAGEMENT 
SYSTEM  

This study proposes a closed-loop DMM system that 
comprises a driving performance monitoring system and a 
feedback-efficacy assessment system. Fig. 1 shows the 
flowchart of the drowsiness monitoring & management 
system. In our previous study [20], the driving performance 
monitoring system could continuously assess fluctuations in 
the alertness level of individuals by observing subjects’ EEG 
changes. While the subjects were drowsy, the warning 
stimulus (1,750 Hz tone burst) could be delivered to them. 
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The feedback efficacy assessment system is designed to 
automatically recognize subjects’ EEG changes following 
arousing feedback to assess the efficacy of the arousing 
feedback. To this end, feedback-induced EEG spectral 
features were selected and fed into machine-learning 
classifiers to detect ineffective warning feedback, and 
additional warning could be delivered to participants again. 
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Figure 1.  System flowchart of the proposed drowsiness monitoring & 
managemenet system 

III. MATERIALS AND METHODS 
A. Subjects 

Eleven subjects (aged from 18-29 years) participated in 
this lane-keeping driving experiment. All subjects had normal 
or corrected-to-normal vision and hearing. All experiments 
were started around 13:30 after lunch. Subjects were asked to 
practice to keep the car in the center of the cruising lane with 
the steering wheel at least for 5 min until their performance 
were satisfactory. Each subject had to perform the driving 
experiment for at least 60 min. 

(b) 

B. Procedure 
The VR scene emulated a car driving at a fixed speed of 

100 km/hr on a highway. The car was randomly drifted away 
from the center of the cruising lane to mimic the 
consequences of a non-ideal road surface [19, 20]. This task 
required subjects to compensate the drifting by manipulating 
the steering to keep the car in the center of third cruising lane. 
The event-related task, a four-lane highway scene, is shown 
in Fig. 2(a). Fig. 2(b) illustrates the experimental paradigm 
and the temporal profile of a typical deviation event in the 
lane-keeping task. Each complete single trial started from the 
3 sec before the car drifting to the subject’s response offset. 
The response time (RT) was calculated from the deviation 
onset to the moment subject manipulated the steeling wheel. 
Each driving experiment lasted ~90 min, including a 5-min 
alert session and an 85-min experiment session. Lane-
departure events were randomly introduced every 8-12 s, 
causing drift at a constant speed towards the curb or into the 
opposite lane with equal probability to continuously assess 
the driver’s drowsiness level [22, 23]. 

During the first 5 minutes, subjects were asked to stay 
alert and the average RT of these alert trials was computed. 
We defined three times average RT as “Threshold” for 
drowsy trials. During the rest of the experiments, if subjects’ 
RTs were over the set threshold, the system triggered a 
warning stimulus (e.g. auditory tone-burst) to the subject in 
half of these drowsy trials (marked as “current trial”). 

The lane-departure event immediately after the “current 
trial” was labeled as the “next trial”. If the warning feedback 
was delivered to the subject, the trial condition was defined 
“with warning”. The trials were labeled “without warning” if 
the warning sound was not delivered. In Fig. 2(b), for the next 
trials, some trials still had RTs longer than threshold, defined 
as “ineffective feedback”; others had RTs shorter than two 
times the mean alert RT, defined as “effective feedback”. 

Figure 2.  (a) The four-lane highway scene used in the event-related lane-
keeping task. (b) A bird’s eye view of the event-related lane-departure event 
and the car moving trajectory in the current trial and next trial after effective 
and ineffective feedback. 

C. Data analysis 
Our previous studies [6, 20] have shown that it is feasible 

to accurately detect drowsiness based on the spontaneous 
EEG spectra in several sustained-attention tasks. This study 
thus focuses on the concurrent EEG and subject behavioral 
changes following arousing auditory feedback to build a 
feedback efficacy assessment system. In the feedback 
efficacy assessment system, the effective or ineffective 
arousing feedback would be classified based on subjects’ 
EEG spectra. Across subjects, a total of 171 trials received 
auditory feedback, including 30 ineffective trials and 135 
effective trials. The trials with RTs between two to three 
times of the average alert RT, were not analyzed in this study. 

The EEG signals were decomposed into temporally 
independent time courses presumably arising from distinct 
brain sources by independent component analysis (ICA) [24, 
25]. Time courses of component activations were then 
transferred to frequency domain by fast Fourier transforms 
(FFT) with 1.5-s moving windows, advancing at an interval 
of 0.7s following subject response, resulting in 20 estimates 
of log EEG power between 4 and 12 Hz for each trial.  

Components from each subject were categorized as brain 
activity or non-brain artifact (e.g., muscle, line noise or eye 
movement activity) by visual inspection of their scalp 
topographies, time courses and activation spectra. Across 
subjects, non-artifact components were then grouped into 
clusters according to their scalp maps, dipole source locations, 
and power spectra. The power spectral baselines of the same 
IC cluster were then averaged across subjects, and compared 
between conditions such as spectra of trials following 
effective versus ineffective feedback. 

IV. RESULTS  
A. Behavioral improvements following auditory feedback 

Fig. 3 shows the boxplots of RTs under different 
conditions for current (drowsy) and next trials. Current trials 
refer to lane-departure events in which the participants failed 
to respond with a compensatory wheel steering. In 50% of 
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these non-responsive trials, the auditory tone of 1,750Hz was 
delivered to the participants (plotted in red). The next trials 
refer to trials following the current drowsy trials. The 
behavioral results showed that the arousing feedback was 
effective in recovering subjects’ performance from the 
inattention or drowsy state. Over 80% of all trials with 
warning would have shorter RT (less than two times the 
average alert RT and even shorter than average alert RT) in 
the next trials. Statistical testing showed that the RTs of trials 
following warning were significantly shorter than those 
without warning (p<0.01). However, some of the next trials 
still had RTs comparable to the trials without feedback, 
indicating the arousing feedback was not effective in these 
trials. Fig. 3 (right panel), further separated trials following 
auditory feedback into effective (red) and ineffective (light 
blue) trials. The RTs of effective trials were significantly 
shorter (p<0.001) than those of the trials without warning and 
with ineffective warning. In fact, the RTs of ineffective trials 
were even longer than those of the trials without warning. 

 

  
Figure 3.  Left panel shows a comparison of RTs to lane-departure events 
between trials with (red) and without (blue) auditory feedback delivered 
after long-RT trials. Right panel shows the trials with effective (red) and 
ineffective light blue) feedback. 

B. EEG dynamics following auditory feedback 
Fig. 4 shows the scalp map and the grand average of 

power spectral baselines of bilateral occipital components. 
The component cluster exhibited tonic broadband power 
increases below 25 Hz in trials subjects received feedback 
(blue and red traces), compared to alert trials (black traces). 
For the trials in which the feedback effectively rectified 
subjects’ behavior (effective trials in Fig. 4 left panel), the 
spectral differences between current and next trials were 
statistically significant (brown horizontal line in Fig. 4 left 
panel) (p<0.005) and most prominent in the theta and alpha 
bands with over 5 dB to 10 dB decreases after receiving 
arousing feedback. In the ineffective trials (c.f. Fig. 4 right 
panel), the power spectra in current and next trials were 
almost the same. The next section tests the feasibility of 
detecting ineffective feedback based on the EEG spectra. 

C. A feedback efficacy assessment system 
Fig. 5 shows the flowchart of feedback efficacy 

assessment system, which used principal component analysis 
(PCA), forward feature selection, backward feature selection, 
and orthogonal locality preserving projection (OLPP) to 
select features from spectra of the bilateral components. This 
study then employed support vector machine (SVM) [26], 
Gaussian maximum likelihood classifier (ML) [27] and k-
nearest neighbor classifier (KNN) [28] to estimate, based on 
extracted component features, if next trials would have RTs 
shorter than two times or longer than three times the average 
RT. If the system detected the warning feedback was not 
effective, the warning could be delivered to the users again. 

Figure 4.  The mean baseline spectra of effective and ineffective trials 
before (current) and after auditory (labeled next) feedback, compared to 
those of alert and no-feedback trials. 

 
Figure 5.  The elements of feedback efficacy assessment system and its 
processing flowchart. 

Fig. 6 shows the classification results of the trials with 
effective and ineffective feedback. The accuracies of ML, 
KNN and SVM classifiers were all above 70%, except ML 
applied to the spectra data without using any feature 
extraction. Some of the accuracies, e.g. PCA plus ML, were 
even exceeded 75%. The differences in accuracies were not 
statistically significant across different feature extraction 
methods. The results also showed that, without feature 
extraction, the SVM classifier could still reach classification 
accuracy above 75 %. 

 
Figure 6.  The classification results of using different feature extractions 
and classifier. 
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V. DISCUSSIONS AND CONCLUSIONS 
This study quantitatively showed that the auditory 

feedback aroused the subjects and triggered prompt 
compensatory responses such that the RTs of next lane-
departure trials were significantly shorter than those of trials 
without auditory feedback (cf. Fig. 3). A significant 
improvement in subjects’ behavioral performance was 
obtained in both current and next trials. Note that the RTs of 
trials following insufficient feedback were longer than those 
of trials without feedback. It could be attributed to the fact 
that in those trials, the subjects were severely drowsy and 
failed to fully recover from sleepiness even with the help of 
the feedback. Because the subjects were extremely drowsy, 
their RTs for the next lane-departure events tend to be longer 
than the averaged RTs of trials without feedback. 

This study also showed that the occipital components 
exhibited significant theta- and alpha-power suppression 
following auditory feedback. These results suggested that 
arousing feedback assisted subjects in reducing their 
drowsiness level, reflected in both behavioral performance 
and brain activities. Furthermore, the theta- and alpha-band 
power of the trials following effective feedback was 
significantly lower than that of the trials following ineffective 
trials (cf. Fig. 3). 

The proposed feedback efficacy assessment system could 
assess the efficacy of arousing feedback presented to the 
drowsy subjects based on the changes in the EEG power 
spectra from the moments immediately after the feedback. 
This demonstration might lead to a practical closed-loop 
DMM system that combines a drowsiness monitoring system 
[6, 20] and a feedback efficacy assessment system. 

  The current study used behavioral responses to trigger 
auditory feedback because, as the first study in assessing the 
efficacy of feedback, it is important to know exact 
occurrences of behavioral lapses. Our future work will 
replace the detection of behavioral lapses with the EEG-based 
alertness monitoring system previously reported in [6, 20]. 
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