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Abstract— This paper presents an algorithm for the identifi-
cation of Hammerstein cascades with hard nonlinearities. The
nonlinearity of the cascade is described using a B-spline basis
with fixed knot locations; the linear dynamics are described
using a state-space model. The algorithm automatically esti-
mates both the order of the linear system and the number and
locations of the knots used to characterize the nonlinearity.
Therefore, it significantly reduces the a priori knowledge about
the underlying system required for identification. A simulation
study on a model of reflex stiffness shows that the new method
estimates the nonlinearity accurately in the presence of output
noise.

I. INTRODUCTION
The Hammerstein structure consists of a zero memory

static nonlinearity followed by a linear dynamic system as
illustrated in Fig. 1 [1], [2]. Biological examples include the
reflex stiffness of the human ankle joint and the mechanical
behavior of lung tissue [3], [4]. Therefore, the accurate iden-
tification of Hammerstein systems is an important problem.

Subspace methods are a well-developed set of tools for
the identification of linear systems. They represent a linear
system by a state-space model that can be estimated with no
a priori knowledge about the system order [5], [6].

Recently, we developed a subspace algorithm for the iden-
tification of Hammerstein cascades that uses the framework
proposed in [7] to estimate the parameters corresponding to
the nonlinearity separately from those of the linear state-
space model. The algorithm models the nonlinearity with
an orthogonal Tchebychev polynomial, and separates the
parameters into two sets: one corresponding to the static
nonlinearity and the second to the state-space model. The
output is a linear function of each parameter set provided
the other set is held constant. Consequently, an iterative least-
squares procedure can be used to find the optimum nonlinear
and linear component parameters [8].

We assessed the performance of this algorithm using a
small signal model of ankle stretch reflex stiffness where we
modeled the nonlinearity with a half-wave rectifier (thresh-
old) and the linear component with a second-order low-pass
filter. We demonstrated that the algorithm could distinguish
changes in threshold from those in the linear component gain
[9].
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Fig. 1. Hammerstein model as a cascade of nonlinear-linear block.

A more general model for the reflex stiffness of one mus-
cle would include both threshold and saturation behaviors
[10]. Moreover, joints are controlled by multiple muscles
which can be expected to have different thresholds and satu-
rations. This could lead to nonlinearities with sharp changes
in slopes. The presence/absence of these corner points could
be significant in interpreting the underlying physiology [11].
Pilot experimental results from our laboratory confirm that
the reflex nonlinearity is more complex than a simple half-
wave rectifier [9].

Such hard nonlinearities are difficult to model using finite-
order polynomials due to problems with oscillations and
instability. Consequently, it is difficult to accurately estimate
the corner points when using a Tchebychev expansion to
describe the nonlinearity. One solution to this problem is to
represent the nonlinearities using splines as in [12].

The contribution of this paper is twofold. First, we de-
velop a subspace identification method for Hammerstein
cascades using splines. Splines have been used for Ham-
merstein identification previously, but the linear component
was described in terms of its impulse response function
(IRF) [12]. Replacing the IRF with a state-space model can
reduce the number of unknown parameters dramatically -
especially for systems with large memory. Therefore, state-
space identification should be more robust in presence of
noise.

Second, in our spline formulation, we show how to choose
number of knots and their locations to describe the static
nonlinearity parsimoniously. This is significant since the
proper choice of the nonlinearity is not well understood and
is usually based on trial and error.

The paper is organized as follows. Section II reviews
the B-spline basis functions, formulates the problem and
describes the algorithm. Section III presents the results of
a simulation study that evaluates the performance of the
new algorithm and compares it to our previous method. Sec-
tion IV provides a summary and some concluding remarks.

II. THEORY

A. B-Spline

A k-th order B-spline is defined by a set of knot points
where the output between each pair of knots is given by a
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(k− 1)-th order polynomial. The first (k− 2) derivatives of
the spline are continuous at the knot locations [13]. If the
knot sequence Λ = {λ1, λ2, · · · , λn+k}T is as follows:

λ1 = · · · = λk = L1 < λk+1 ≤ · · · ≤ λn <
< L2 = λn+1 = · · · = λn+k (1)

where L1 and L2 are the minimum and maximum of the
nonlinearity’s input. Then, the spline’s output w is defined
as:

w =

n∑
j=1

S
{k}
j (u)αj (2)

where α is the set of coefficients of the B-spline α =

[α1, · · · , αn]T and S
{k}
j is the sequence of normalized B-

splines of order k with respect to the knot sequence Λ and
is derived from the following recursive equation:

S
{1}
j (u) =

{
1 if λj ≤ u < λj+1

0 otherwise
(3a)

S
{k}
j (u) = p

{k}
j (u)S

{k−1}
j (u) +

(
1− p{k}j+1(u)

)
S
{k−1}
j+1 (u)

(3b)

p
{k}
j (u) =

{
u−λj

λj+k−1−λj
if λj < λj+k−1

0 otherwise
(3c)

Now, the output of the nonlinearity based on this approxi-
mation is:

W = Sα (4)
where, W is the sampled vector of the output of the non-
linearity W = [w(1), · · · , w(N)]

T and S is the observation
matrix defined as follows:

S =


S

{k}
1 (u(1)) · · · S

{k}
n (u(1))

S
{k}
1 (u(2)) · · · S

{k}
n (u(2))

...
...

S
{k}
1 (u(N)) · · · S

{k}
n (u(N))

 (5)

B. Hammerstein Formulation
Consider the single input single output SISO Hammerstein

system shown in Fig. 1. Assume that the order of the
linear system is m and the elements of the B and D
state-space matrices are B = [b1, · · · , bm]

T and D = [d].
Transform this SISO nonlinear cascade to a multi input
single output MISO linear system whose n inputs are the
outputs of the constructed spline basis functions, i.e., U(k) =[
S
{k}
1 (u(k),Λ) · · · S{k}n (u(k),Λ)

]T
. The resulting MISO

state-space model is:{
x(k + 1) = Ax(k) +BαU(k)

y(k) = Cx(k) +DαU(k)
(6)

where, x(k) is the state vector while, A and C are the linear
system state-space matrices. The elements of Bα and Dα are
given by:

Bα =

 b1α1 · · · b1αn
...

. . .
...

bmα1 · · · bmαn

 (7)

Dα =
[
dα1 · · · dαn

]
(8)

The measured output ỹ(k) is contaminated with noise:

ỹ(k) = y(k) + n(k) (9)

If the state-space matrices A and C are known, the output
of the Hammerstein system is given by [8], [14]:

ỹ(k) =

[
k−1∑
τ=0

UT (τ)⊗ CAk−1−τ
]

vec(Bα) + UT (k)vec(Dα)

(10)
+ n(k)

where ⊗ is the Kronecker product. Rewriting (10) in a matrix
format gives:

Ỹ = Ψ [α1b1 · · · α1bm · · · αnb1 · · · αnbm α1d · · · αnd]T

+N (11)

where Ψ is the observation matrix defined using the input
signal as well as A and C according to (10). This relation
shows that the unknown parameters comprise two sets: α
which contains the coefficients of the spline, and θbd =
[b1, · · · , bm, d]T which contains the state-space elements.

C. Identification Algorithm

Step 1: Assume the knot sequence Λ, λ1 = · · · = λk =
min (u(k)) and λn+1 = · · · = λn+k = max (u(k)) where
λk+1, · · · , λn are equally spaced across the input signal
range with the resolution of max(u(k))−min(u(k))

n−k .
Step 2: Construct the B-spline basis expansion (5) of the

input signal using the knot sequence Λ.
Step 3: Use the MOESP algorithm, described in [5], to

estimate the A and C matrices of the linear state-space model
of (6) using the constructed input signal (U(k)) and noisy
output (9).

Step 3: Initialize the coefficients set α = [1, · · · , 1]Tn×1.
Step 4: Construct the matrix Ψα:

Ψα = Ψ


0 · · · · · · · · · · · · · · · 0 α̂1 · · · α̂n
0 · · · α̂1 · · · 0 · · · α̂n 0 · · · 0
... . .

. ...
... . .

. ...
...

...
α̂1 · · · 0 · · · α̂n · · · 0 0 · · · 0


T

(12)
Estimate θbd by solving the least-squares problem: Y =
Ψαθbd

Step 5: Construct the matrix Ψbd:

Ψbd = Ψ



b1 0 · · · 0
...

...
. . .

...
bm 0 · · · 0
0 b1 · · · 0
...

...
. . .

...
0 bm · · · 0
...

...
...

...
0 0 · · · b1
...

...
. . .

...
0 0 · · · bm
d · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · d



(13)
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Estimate α by solving the least-squares problem: Y = Ψbdα.
Step 6: Compute the sum of squared errors SSE for the

model and compare it to that from the previous iteration. Go
to step 7 if there is not a significant decrease. Otherwise, go
to Step 4.

Step 7: Sort the knot points as follows. Recall that in a
kth order spline, the (k − 1)th derivative is discontinuous at
the knot locations. If the (k−1)th derivative is discontinuous
at a knot location, that knot is active and contributes to the
characterization of the static nonlinearity. If the (k − 1)th

derivative is continuous, that knot does not actively con-
tribute in characterization of the static nonlinearity [15]. In
the presence of output noise, however, the spline coefficient
estimation is not perfect and small discontinuities in the
(k − 1)th derivative may be observed at inactive knots.
Consequently, we sort the knots according to the amount of
discontinuity in the (k−1)th derivative which can be simply
measured from the (k − 2)th derivative at knot locations.

Step 8 Iteratively, identify the system by adding knots
according to the order of the sorted sequence of Step 7. Cal-
culate the mean squared error (MSE) at each identification.
Stop adding knots when no significant improvement in MSE
is observed.

III. SIMULATION RESULTS

We assessed the performance of the algorithm using a
small signal model of ankle stretch reflex stiffness. The input
to this system is the angular velocity of the ankle joint and
the output is the reflex torque. This system was modeled
as a Hammerstein system consisting of a half wave rectifier
followed by a second-order low pass filter [3], [16].

More recent work has demonstrated that in the human
ankle, the threshold is not fixed at zero [1] but changes
with the background torque level [9]. Moreover, there is also
experimental evidence for a saturation nonlinearity. Further-
more, several muscles, presumably with different thresholds,
interact to generate the overall reflex response. Therefore, we
considered a more general nonlinearity model consisting of a
threshold, an intermediate change of slope, and a saturation
as shown in Fig. 2. This type of nonlinearity models three
experimental phenomena: (a) the strong unidirectional rate
sensitivity (t1), (b) activation of a set of new muscle fibers
(t2) and (c) the saturation of the response at high velocities
(t3). Consequently, the nonlinearity has three corner points
which were set to t1 = −0.4, t2 = 0, t3 = 0.4. We modeled
the linear system as a second-order low-pass filter:

G(s) =
Grω

2
n

s2 + 2sζωn + ω2
n

(14)

The parameters of the linear element were chosen to be
similar to those found experimentally (Gr = 1, ωn =
55, ζ = 2.2) [16].

The input angular joint velocity signal was a uniform
random number between -3 and 3 rad/s. We simulated the
input and output signals at 1000 Hz for 60s. A realization of
white Gaussian noise was added to the output to generate a
signal to noise ratio (SNR) of 10 dB.

 Velocity ( )rad
s   

1t  2t  

2

2 22
r n

n n

G
s s

ω
ζω ω+ +  

Torque (Nm) 

3t  

Fig. 2. Hammerstein model of reflex stiffness.

We identified that system from the simulated data using
an initial spline of order 2 with 34 knots equally spaced in
the range of input.

Fig. 3(A) shows the derivative of the nonlinearity esti-
mated with 34 knots after step 6 of the algorithm. It is evident
that the derivative is discontinuous at some knot locations
but not others. To separate knots whose discontinuities were
not significant from those with significant discontinuities, we
sorted the knots by the value of their second derivatives as
shown in Fig. 3(B). Fig. 3(C) shows that after selection of the
first five knots, the MSE between the predicted output of the
Hammerstein cascade and clean output converged to a small
number. This indicates that only the first five knots were
important and adding more knots would not significantly
improve the identification. Consequently, we consider only
the first five important knots as active ones.

We identified the system once again using only the active
knots and also compared the result with our previous algo-
rithm in [8] which used an 8-th order Tchebychev polynomial
with a subspace identification approach. Fig. 4(A) shows the
results. It is evident that the spline was more accurate despite
having fewer parameters than the polynomial. Moreover, the
transition points, which were not easily identified in the
Tchebychev polynomial, were clearly evident with splines.
The variance accounted for (VAF) of the estimated output
compared to the clean output using spline was higher than
Tchebychev: 99.97% for B-spline and 97.62% for Tcheby-
chev. Fig. 4(B) shows that the frequency response of the
identified linear dynamic using B-spline and Tchebychev
matched the true system accurately.

IV. DISCUSSION

An identification algorithm was developed for Hammer-
stein cascade systems. The algorithm uses a subspace ap-
proach and is useful for systems with hard nonlinearities. It
models the nonlinear element with a B-spline and the linear
element with a state-space model. It then transforms a SISO
Hammerstein system to a MISO linear system.

Simulation results of a model of ankle reflex stiffness show
that the new method provided more accurate estimates of the
nonlinearity than our previous subspace method and could
successfully detect sharp corner points. This improvement
should make possible a better understanding of the underly-
ing physiological information.

The new method requires minimal a priori information.
The method uses the MOESP subspace algorithm to estimate
the A and C state-space matrices. Prior to the identification
of these matrices, MOESP estimates the order of the linear
system. Second, the method determines the minimal number
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Fig. 3. Selection of active knots: (A) first derivative of the estimated spline;
(B) sorted knots according to the second derivative of the spline; (C) MSE
according to the sorted knot sequence.
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Fig. 4. Identified Hammerstein system: (A) Static nonlinearity, spline using
only active knots superimposed on the 8-th order Tchebychev approxima-
tion; (B) Identified linear system frequency response.

of knots and their locations required to represent the static
nonlinearity.

Another advantage of the method is that it does not require
the use of Gaussian inputs. It uses an over-parameterized
MISO model and so does not rely on Busgang’s theorem
and therefore does not require a Gaussian distribution for the
input signal. This is useful for experiments where Gaussian
inputs cannot be used or generated, such as studies of
reflex stiffness where a PRBS input signal is often used
for identification. It is also advantageous to use uniformly
distributed inputs in Hammerstein identification, since the
input can equally excite all regions in the nonlinearity [17].

The knot locations used for the parsimonious model were
a subset of those used for the initial segmentation. Conse-
quently, the estimation of corner point locations in the hard
nonlinearity is limited to the resolution of segmentation, i.e.,
location of knots. For instance, in the simulation study, the
input range was between -3 to 3 rad/s and we used 34 knots.
Therefore, the resolution of corner point estimation is ±0.09

rad/s. One way to increase the estimation accuracy of the
corner points would be to use methods that consider variable
knot location. However, for variable knot locations, the
problem is highly nonlinear [18], [12]. Therefore, nonlinear
optimization techniques need to be used to find the optimum
knot location. It is known that if the initial condition of a
nonlinear optimization problem is set properly, the likelihood
of convergence to global minimum is increased. The new
method can be a good candidate to find the initial condition
for the optimization search, i.e., we can use active knots as
initial condition of the optimization search to finely tune their
optimal location.

REFERENCES

[1] D. Westwick and R. Kearney, “Separable least squares identification of
nonlinear Hammerstein models: Application to stretch reflex dynam-
ics,” Annals of Biomedical Engineering, vol. 29, pp. 707–718, 2001.

[2] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear
biological systems: Wiener and Hammerstein cascade models,” Bio-
logical Cybernetics, vol. 55, no. 2-3, pp. 135–144, 1986.

[3] R. E. Kearney, R. B. Stein, and L. Parameswaran, “Identification of
intrinsic and reflex contributions to human ankle stiffness dynamics,”
IEEE Transactions on Biomedical Engineering, vol. 44, no. 6, pp.
493–504, 1997.

[4] G. N. Maksym, R. E. Kearney, and J. H. T. Bates, “Nonparametric
block-structured modeling of lung tissue strip mechanics,” Annals of
Biomedical Engineering, vol. 26, pp. 242–252, 1998.

[5] M. Verhaegen and P. Dewilde, “Subspace model identification part 1.
the output error state space model identification class of algorithm,”
International Journal of control, vol. 56, no. 5, pp. 1187–1210, 1992.

[6] ——, “Subspace model identification part 2. analysis of the elementary
output-error state space model identification algorithm,” International
Journal of control, vol. 56, no. 5, pp. 1211–1241, 1992.

[7] E. Bai and D. Li, “Convergence of the iterative Hammerstein system
identification algorithm,” IEEE Transactions on Automatic Control,
vol. 49, no. 11, pp. 1929–1940, 2004.

[8] K. Jalaleddini and R. E. Kearney, “An iterative algorithm for the
subspace identification of siso Hammerstein systems,” in Proceedings
of IFAC, 2011, pp. 11 779–11 784.

[9] ——, “Estimation of the gain and threshold of the stretch reflex with
a novel subspace identification algorithm,” in Proceedings of IEEE
Engineering in Medicine and Biology Society, 2011, pp. 4431–4434.

[10] R. B. Stein and R. E. Kearney, “Nonlinear behavior of muscle reflexes
at the human ankle joint,” Journal of Neurophysiology, vol. 73, no. 1,
pp. 65–72, 1995.

[11] L. Q. Zhang and W. Z. Rymer, “Simultaneous and nonlinear iden-
tification of mechanical and reflex properties of human elbow joint
muscles,” IEEE Trans Biomed Eng, vol. 44, no. 12, pp. 1192–1209,
1997.

[12] E. J. Dempsey and D. T. Westwick, “Identification of Hammer-
stein models with cubic spline nonlinearities,” IEEE Transactions on
Biomedical Engineering, vol. 51, no. 2, pp. 237–245, 2004.

[13] H. Schwetlick and T. Schütze, “Least squares approximation by splines
with free knots,” BIT, vol. 35, no. 3, pp. 361–384, 1995.

[14] L. R. J. Haverkamp, “State space identification: Theory and practice,”
Ph.D. dissertation, Delft University of Technology, 2001.

[15] W. V. Loock, G. Pipeleers, J. D. Schutter, and J. Swevers, “A convex
optimization approach to curve fitting with B-splines,” in Proceedings
of IFAC, 2011, pp. 2290–2295.

[16] M. M. Mirbagheri, H. Barbeau, and R. E. Kearney, “Intrinsic and
reflex contributions to human ankle stiffness: variation with activation
level and position,” Experimental Brain Research, vol. 135, no. 4, pp.
423–436, 2000.

[17] I. J. LeonTaritis and S. A. Billings, “Experimental design and identifia-
bility for non-linear systems,” International Journal of System Science,
vol. 18, no. 1, pp. 189–202, 1987.

[18] D. T. Westwick, S. L. Kukreja, and M. J. Brenner, “Identification
of highly resonant Hammerstein systems with hard nonlinearities,” in
Proceedings of ICNPAA-2006: Mathematical Problems in Engineering
and Aerospace Sciences, 2007, pp. 813–820.

3319


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

