
  

 

Figure 1. Scheme of one experiment trial 
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Abstract— In this study, we explore the discriminability of 

high gamma activities from speech production cortex during the 

overt articulation of two sentences. Neural activities were 

recorded from one intracranial electrode placed approximately 

over the posterior part of the inferior frontal gyrus. By 

employing a dynamic time warping (DTW) method to realign 

single-trial high gamma response during speech productions, 

averaged temporal activation patterns corresponding to the two 

spoken sentences were obtained. Single-trial ECoG responses 

were subsequently classified according to their correlations with 

these two temporal activation patterns. On average, 77.5% of 

the trials were correctly classified, which was much higher than 

the chance-level performance of the SVM classifier without 

DTW. Our preliminary results shed light on the construction of 

cortical speech brain-computer interfaces on the sentence level. 

 

 

I. INTRODUCTION 

Brain-computer interfaces (BCIs) aim at helping the 
severely motor disabled people to communicate with the 
external world [1-2]. Till now, self-regulation of motor related 
functions and attention modulation of sensory responses have 
been extensively studied for BCI control, with the majority 
using the non-invasive electroencephalography (EEG) 
technology. In contrast, although speech is the most effective 
communication channel for human beings, BCI studies using 
speech-related brain activities are limited: it is difficult to 
characterize the complex and distributed speech network 
using EEG due to its relatively low spatial resolution. 

Recently, it has been suggested that intracranial EEG 
(electrocorticography, ECoG) could be a suitable candidate 
toward building speech BCIs [3-6]. ECoGs are recorded 
directly from the surface of the human cortex, having both 
high spatial resolution (~mm) and high temporal resolution 
(~ms). In addition, low voltage, high frequency oscillations 
(i.e. >40 Hz) that cannot be easily seen in EEG can be clearly 
observed using ECoG. It has been demonstrated that the 
production of different phonemes, including vowels and 
consonants, can be discriminated using ECoG in the high 
gamma range (70-170 Hz) from a variety of brain regions, 
including the superior and middle part of temporal lobe, 
Wernicke’s area, Broca’s area, premotor cortex, etc. [5, 7-8]. 

While previous speech BCI studies focused on the 
phoneme-level speech production, BCI classifications can 
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also be carried out on the sentence level. The sentence level 
BCI paradigm may facilitate BCI performance for the 
following reasons: 1) better user experience is expected as it is 
more natural to speak a complete and meaningful sentence 
than single phonemes; 2) the rich temporal information of 
sentences may provide additional information for 
classification [9]. 

In this study, we investigated whether different spoken 
sentences can be distinguished using the simultaneously 
recorded ECoG signals. We hypothesized that the temporal 
structures of different spoken sentences could result in 
discriminable temporal activation patterns of high gamma 
oscillations at brain areas related to speech production, 
providing information for BCI classification. ECoG data were 
obtained from one epilepsy patient with subdural electrodes 
placed over the left frontal and temporal lobes. During the 
experiment, the patient was asked to overtly speak one of two 
8-character sentences in Chinese. We analyzed the ECoG 
signals from one subdural electrode placed approximately 
over the posterior part of the inferior frontal gyrus, which 
showed the largest speech-related high gamma responses. 
Specifically, in consideration of the large variability in time 
and speed of the single-trial speech articulation, the dynamic 
time warping (DTW) method that has been widely employed 
in speech signal processing [13] was introduced for 
constructing the BCI classifier articulation. By using the high 
gamma oscillations from one subdural electrode, 77.5% of the 
trials were correctly recognized. 

II. METHODS 

A. Paradigm and Procedure 

A delayed sentence-repeating paradigm was used in our 
experiment (Fig. 1). At the beginning of each trial, the patient 
first heard one of two 8-character sentences (denoted as 
sentence A and B) in Chinese through computer speakers 
while he was fixating on a white cross presented on the 
computer screen. The two sentences were famous Chinese 

proverbs: A) ý�Ç�ÈývÇv (As a man sows, so he 

shall reap); B) q¤AX, ®¤Aê (it takes a decade to 

become a tree, and a century to become a man). After a delay 
of 1.2 s to 1.5 s following the offset of the auditory 
presentation, the patient received a visual cue (the color of the 
fixation cross changed from white to red) instructing him to 
repeat the heard sentence verbally. The patient was required to 
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Figure 2. Procedure for obtaining the averaged temporal activation pattern (TAP) using dynamic time warping (DTW). 

 

Figure 3. The classification procedure. 

press a button when the verbal task was finished. 40 trials were 
run in total, with 20 trials per sentence presented in a random 
order. The experiment program was implemented in Matlab 
(the Mathworks, USA) using Psychophysics Toolbox 3.0 
extensions [10]. 

B. Data Preprocessing 

In this study, we focused on the power envelop of the high 
gamma oscillations, as the high gamma oscillations were 
previously reported to be highly correlated with speech 
functions [5, 7]. Specifically, the ECoG data were first 
band-pass filtered to 60-90 Hz and then transformed into 
analytic signals by Hilbert transform. The time-varying high 
gamma power envelops were obtained by taking the 
amplitudes of the Hilbert transformed data. The high gamma 
power envelops were log-transformed to follow 
approximately normal distributions [11]. Afterwards, the log 
transformed power envelops of 1 s duration prior to the speech 
cue were used as the baseline to normalize the power envelops 
following the speech cue: the power envelops following the 
speech cue were transformed into z-scores by subtracting the 
mean and being divided by the standard deviation of the 
baseline data segment. The subdural electrode with the largest 
high gamma responses was chosen for further analysis. 

Since we hypothesized that the neural activities of the two 
spoken sentences can be discriminated by their temporal 
activation patterns of the high gamma responses at brain areas 
related to speech production, it was therefore likely for these 
high gamma responses to follow the verbal output. However, 
it was unlikely for high gamma activities at the cortex level to 
represent the verbal output in every detail [9]. Rather, an 
optimal correlation should presumably be achieved at a coarse 
time scale, using a properly defined sliding time window to 
smooth the data. As the possible difference between the time 
courses of the high gamma responses was considered to 
originate from the verbal responses, the time window width 
showing the maximal correlation between high gamma power 
and verbal output was deemed as the optimal scale for 
classification. To determine the optimal time window width, 
the high gamma power envelopes and the corresponding 
verbal output envelops were each smoothed by a sliding 
window with the same time width ranging from 50 ms to 1000 
ms; the correlation coefficient between the smoothed 
envelopes was then calculated. The z-score transformed high 

gamma power envelops were smoothed at the optimal time 
window width before the following analysis. 

C. Extracting the Temporal Activation Patterns (TAPs) 

Using Dynamical Time Warping (DTW)  

Ideally, there are temporal activation patterns (TAPs) that 
represent the stereotypical ECoG response patterns for each of 
the two sentences. Single-trial ECoG signals could then be 
classified according to their correlations with the TAPs. 
Nonetheless, the variability in time and speed of single-trial 
speech production posed a significant challenge for TAP 
estimation; computing the TAPs by simply averaging the 
ECoG signals across trials was likely to be detrimental to the 
original temporal structure of the spoken sentences. To 
remedy this issue, the DTW method was utilized to first 
realign different trials in time according to the patient’s verbal 
responses. Briefly speaking, with the acoustic signal of each 
presented sentence as the template, we employed the DTW to 
find a nonlinear transformation solution in the time domain in 
order to achieve the optimal match of single-trial verbal 
responses to the audio template. The same transformation 
solution was identically applied to the corresponding ECoG 
high gamma envelope signal, resulting in realigned neural 
responses. The TAPs of the two sentences used in the 
experiment were then calculated as the average of the 
realigned single-trial cortical responses in the corresponding 
trials. The procedure is shown in Fig. 2. 
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Figure 6. The verbal output and the temporal activation pattern of the 

two spoken sentences 

 

Figure 5. Correlation between the verbal output and the high gamma 

power as a function of the time window width at the chosen electrode. 

 

Figure 4. (a) Approximate electrode locations; the 3 electrodes with 

significant high gamma power increases were marked in red; the 

electrode pointed by the white arrow was chosen for the following 

analysis. (b) the time-frequency plot of the chosen electrode during 

sentence articulation; high gamma power changes were shown in 

z-score, only time-frequency bins with significant changes were shown 

(p<0.05, false detection rate corrected). 

D. DTW based Classification 

In the previous section, DTW was applied on audio signals 
(i.e. patient’s verbal responses) and the resulted 
transformation solutions were used to realign the single-trial 
ECoG responses before averaging. For classification, a second 
round of DTW was applied to realign single-trial ECoG 
responses to the two TAPs corresponding to the two sentences. 
Then the correlation coefficients between the DTW-realigned 
single-trial responses and the two TAPs were calculated and 
taken as the features for BCI classification, thus forming a 
two-dimension feature vector (i.e. single-trial correlation with 
TAPs of sentence A and B). Fisher Linear Discriminant 
Analysis was subsequently employed for feature classification. 
The discriminability between the two sentences was evaluated 
using leave-one-out cross validation, where the TAPs were 
re-estimated from the training dataset for each classification. 
The classification procedure is summarized in Fig. 3. 

To validate the effectiveness of the DTW-based 
classification method, another classifier was constructed using 
the original ECoG high gamma envelop as features to train a 
support vector machine (SVM) using a linear kernel function, 
without temporal adjustment using DTW. 

E. Patient and ECoG Recordings 

The experiment was conducted with one patient (male, 38 
years old) who suffered from intractable epilepsy and 
underwent temporary placement of intracranial ECoG 
electrode arrays to localize seizure foci prior to surgical 
resection. Prior to the implantation of electrodes, the patient 
gave written informed consent for his involvement in research. 
This study was approved by the Research Ethics Committee of 
Tsinghua University and the affiliated Yuanquan Hospital. 

For this patient, two 32-electrode grids (4 mm electrode 
diameter and 1 cm inter-electrode distance) were placed over 
the frontal and temporal lobe (see Fig. 3a). Grid placement and 
duration of ECoG monitoring were entirely based on the 
clinical requirements, without any consideration of this study. 

ECoG signals were recorded using a g.USBamp 
amplifier/digitizer system (g.tec, Graz, Austria). The amplifier 
sampled the 64-channel (2 × 32-electrode grids) signal at 1200 
Hz with a high-pass filter of 0.1 Hz cutoff frequency and a 
notch filter at 50Hz to remove the power line noise. Four 
inactive epidural electrodes facing the skull were employed as 
the ground and the reference. In addition, the patient’s verbal 
responses were synchronously recorded as one channel in the 
g.USBamp system. 

For localizing the ECoG electrodes, the stereotactic 
coordinates of the electrodes were identified based on the 
patient’s lateral skull radiographs (acquired by Siemens 
SOMATOM Sensation 64 CT), using the LOC toolbox [12]. 

III. RESULTS 

The patient performed all 40 trials of sentence-repeating 
task correctly without mistake. On average, the patient spent 
approximately the same time to speak both the two sentences 
(sentence A vs. B: 2.8 ± 0.2 s vs. 2.6 ± 0.2 s, p>0.05, t-test). 
During the sentence articulation period, strong high gamma 
responses were found in the posterior part of the inferior 
frontal gyrus (Fig. 4a). The electrode with the strongest high 
gamma response (marked by the arrow) was chosen for the 

following analysis. From its time-frequency plot (Fig. 4b), 
significant increase of high gamma power was observed. 

Fig. 5 shows the correlation between the verbal output and 
the high gamma power at the chosen electrode as a function of 
the time window width. The maximal correlation was found at 
the time window width of 300 ms (0.16, p<0.0001), which was 
used as the optimal time window for smoothing the ECoG 
data. 

Based on the selected electrode and time window width, 
the temporal activation patterns for the two spoken sentences 
are illustrated in Fig. 6. From the verbal output, it was clear 
that the two sentences were of different temporal structures, 
and the TAP from the ECoG data showed similar temporal 
structures with the verbal output. 

Using the correlation coefficients between the DTW 
realigned single-trial ECoG response and the two temporal 
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Figure 7. (a) Representation of the two classes in the feature space. (b) The 

classification accuracies of algorithms with / without DTW. 

activation patterns as features, the cross validation revealed 
that 75% of sentence A and 80% of sentence B were correctly 
recognized. The discriminability of the two sentences is 
illustrated in Fig. 7a, in which half of the trials were used for 
obtaining the TAPs and the other half for testing. It was clear 
that “A” trials were of higher correlations with TAP A and 
vice versa. In contrast, the SVM classifier without realignment 
only performed at the chance level (50% by leave-one-out 
cross validation, Fig. 7b). 

IV. DISCUSSION AND CONCLUSION 

In this study, the temporal activation patterns during the 
articulation of different sentences were extracted from the 
high gamma response recorded from an ECoG electrode at the 
posterior part of the inferior frontal gyrus. By applying the 
DTW method to realign the single-trial ECoG responses, 
temporal activation patterns of the two spoken sentences were 
obtained. A DTW-based classifier was then constructed on the 
basis of the temporal activation patterns. For the two -sentence 
classification problem, an average classification accuracy of 
77.5% was achieved. 

DTW method has been widely used for speech processing 
[13]. Here we used DTW for realigning not only the audio 
signals (i.e. verbal responses) but also the single-trial ECoG 
responses. Compared to the SVM classifier without 
realignment of the ECoG data, the DTW-based classifier 
obtained much higher classification accuracy (77.5% vs. 50%). 
These findings suggested that the single-trial ECoG responses 
of the same sentence indeed shared similar temporal structures 
that can be captured by the DTW method. 

Here the classification was performed using one electrode 
from the posterior part of the inferior frontal gyrus, which was 
within the Broca’s territory [9]. Therefore, we conjecture that 
the ECoG activities used for classification reflected the motor 
control for speech production. Given the fact that the 
classification results were achieved using a classifier based on 
the temporal activation patterns for feature extraction, the 
discriminability of the two sentences was likely to rely on the 
different temporal structure of the sentences. The 300 ms time 
window used for data preprocessing thus might indicate that 
the differences between the two classes originated from the 
syllable level speech motor controls. 

While previous ECoG studies on speech decoding focused 
on phoneme level processing [5, 8, 15], our results for the first 
time showed the possibility to ‘decode’ the spoken sentences 
using their temporal structures as a new feature for 

classification. The proposal of using such a feature was based 
on the observations that such temporal structures were partly 
preserved on the high gamma oscillations of the Broca’s area. 
The articulation of sentences also involves other brain regions 
such as the premotor cortex, cerebellum [14], which were not 
seen due to the limited coverage of the ECoG electrode in the 
present study. With more information from different 
speech-related brain regions available, speech BCIs may assist 
people to communicate in a natural way by directly using their 
speech related brain activities. 
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