
Abstract: Our overall goal is to develop a reinforcement 
learning (RL) based decoder for brain machine interfaces. 
As an important step in this process, we determine the basic 
stability and convergence properties of a Temporal 
Difference (TD) RL architecture being driven by a simulated 
motor cortex.  

I. INTRODUCTION: 
	  

RAIN-machine interfaces (BMIs) offer tremendous 
promise as assistive systems for motor-impaired 
patients [3]. Various supervised decoders with high 

performance rates have been suggested to map the neural 
data acquired from the cortex to available actions [8-15].   
Reinforcement Learning (RL) based decoders proposed in 
[2, 3] enable the BMI agent to learn and grow through 
experience as a natural brain network would [4], without 
explicit training signals. This computational and 
biological framework offers a method of neural 
interfacing that uses goal-directed, experience-based 
learning to relate neural modulation to behavior through 
accumulation of rewards and interaction with the 
environment [4]. Noisy neural tuning curves, 
measurement noise, loss of neurons, and within-day or 
day-to-day variations in the neural data are common 
problems that have to be dealt with appropriately by the 
decoder, ideally with minimal effect on  performance. We 
performed rigorous simulations to quantify the 
capabilities of an RL based decoder with respect to these 
reliability constraints. We present here a series of 
simulations in which an RL-based decoder was applied to 
a model of a noisy plastic biological neuronal ensemble.  

II. METHODS: 

A simulated neuron was developed using the Izhikevich 
Model [1] as shown below: 

                    𝑣 ʹ′ = 0.04 ∗ 𝑣! +   5 ∗ 𝑣 + 140 − 𝑢 + 𝐼  (1) 

 𝑢ʹ′ =   𝜂  (𝛽 ∗ 𝑣 − 𝑢) (2) 
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Where, ‘𝒗’ is the membrane potential of the neuron with a 
resting membrane potential at 65mV, ′𝒖′ is the membrane 
recovery variable,′𝑰’ is the current that goes into the 
neuron, ′𝜼′ and ‘𝜷′ are dimensionless variables. The 
parameter ′𝜼′ describes the time scale of the recovery 
variable ′𝒖′ [1]. Smaller values result in slower recovery. 
The parameter ′𝜷′ describes the sensitivity of the recovery 
variable ′𝒖′ to the sub-threshold fluctuations of the 
membrane potential    ′𝒗′ [1]. A spike was detected every 
time the membrane potential of the neuron surpassed 30 
mV. Given such a model for each neuron, a neural 
ensemble was developed for our simulations. We started 
with simple unimodal tuning curves with respect to 
movement direction and built up assymetric and biomodal 
tuning curves as follows: Asymmetric curves were 
created by superimposing two unimodal tuning curves 
with a peak separation randomly chosen between 30 to 55 
degrees [6]. Bimodal curves were created by 
superimposing two unimodal curves with a peak 
separation randomly chosen between 125 to 155 degrees 
[6].  
 

 
 

Figure 1: Tuning Curves  

The neural ensemble consisted of 80 neurons composed 
of 60% unimodal, 15% bimodal and 25% asymmetric 
neurons [6]. The firing rates for these neurons were 
generated every 100ms to provide a time scale close to 
firing rates observed during behavior [7]. The tuning 
depth of our simulated neuron is affected by the ratio of 
their modulated input current, which is a function of the 
present movement direction and their tuning curve as seen 
in Fig.1, to their baseline input current to the Izhikevich 
model as defined below: 

 𝐼 = 𝑎 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑎𝑔𝑒  𝑜𝑓  𝑎  𝑛𝑒𝑢𝑟𝑜𝑛 +   𝑏 (3) 
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Where, ′𝑰′ is the current that goes into the neuron as 
shown in Eq (1), ‘weighting of each neuron’ is the weight 
obtained from the neuron’s tuning curve as shown in 
Figure (1). By modifying the ′𝒂′ and ′𝒃′ parameters of Eq 
(3), we controlled the baseline and the maximum 
modulated input current to the Izhikevich model thus 
effectively controlling baseline and modulated firing rate 
for each neuron. Henceforth, we will refer to ′𝒂/𝒃′ of our 
model as ‘Izhikevich-tuning depth’ (ITD). Note that 
“biological noise” was added to the variables ′𝒂′ and ′𝒃′ in 
the form of a white Gaussian noise with standard 
deviation of 1 to simulate noisy tuning curves.  

All the simulations were performed by the RL agent on a 
center out reaching task wherein, a circular task plane 
with 4 targets was simulated as shown in Figure (2). The 
RL agent was provided with only one opportunity to 
select the correct action out of 8 possible actions to reach 
the target in a given trial. A trial is considered successful 
when the RL agent’s cursor is on the target and 
unsuccessful otherwise.    

 

Figure 2: Target Plane for the RL agent. The agent capable of executing 
8 possible actions initiates its movement from the starting point and 
intends to reach the target in one step. 

The adaptive nature of the neural ensemble under 
consideration here was developed as per the conclusions 
made in [6, 12]. A neuron’s preferred direction (PD), 
which is the direction of movement that causes maximal 
activity, which lies near a given target is consolidated 
towards the target at a rate that depends on how far the 
neuron’s PD is at any given time from the intended target. 
The update in the PD is performed only on the neurons 
containing PD within 45 degrees on either side of the 
intended target direction for a given trial. Such a neural 
consolidation complemented by the improvement of the 
modulation depth mimics the observed adaptation of the 
brain while performing BMI (brain machine interface) 
task. ITD was increased at a rate of 22% per hour [12]. 
We used the reinforcement learning architecture 
introduced in [2] and developed further in [3] to control a 
simulated BMI.	  We modeled the agent’s cursor control 
problem as a Markov Decision Process (MDP) wherein 
the RL agent tries to learn the optimal mapping between 
the neural states and intended action. Specifically, we 

used Q(λ) learning [5] where Q is called the state-action 
value function. The firing pattern from this neural 
ensemble was given as input to a multilayer perceptron 
(MLP) with one hidden layer consisting 120 hidden units. 
Update of the weights was performed by back 
propagation [2, 3]. Eight actions were available to the RL 
agent. Output units of the MLP state the Q value for each 
action and the action with the highest Q value is executed 
99% of the steps as the optimal action for a given state. 
Exploratory rate, defined as the percentage of steps in 
which an action is executed randomly irrespective of its 
optimality at a given state, was set at 1%. Exploratory rate 
allows the RL agent to venture out to discover new 
solutions to the problem, useful especially in an altering 
environment. The learning rates of the outer layer and 
inner layer of MLP were 0.005 and 0.01 respectively. 
Usually, for one simulated session the weights were 
randomly initialized. 

III. RESULTS & DISCUSSIONS: 
	  

• Izhikevich-tuning depth vs. RL agent’s 
performance: 

Figure (3) presents the performance of the RL agent as a 
function of the ITD for a neural ensemble consisting of 80 
neurons. A tuning depth of 0.75 was found to be needed 
to consistently yield approximately 95% success. For ITD 
values above 0.75, the success rate of the RL agent 
approaches 100% and levels off.  This suggests that in 
selection of a subset of neurons from a recorded 
population (for dimensionality reduction), neurons with 
large tuning depths should be preferred.  

 

Figure 3: Performance of the RL agent as a function of the Izhikevich-
tuning depth for a neural ensemble consisting of 80 neurons 

In order to determine the effects of varying other 
parameters on the adaptive performance of the RL agent, 
two ITD values were investigated further: a/b = 0.4 and 
0.75, which corresponded to a success rate of about 65% 
and above 95%, respectively. 

A stationary RL agent (learning rate reduced to zero; 
continuing with the weights obtained post convergence) 
was tested on noisy biological ensemble models with two 
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different ITDs. The RL agent was found to be capable of 
performing over 65% when applied to an ensemble with 
ITD value of 0.75 or more, compared to an ITD value of 
0.4, as shown in Figure (4).  RL decoding of the ensemble 
with ITD=0.75 was also more robust to noisier tuning 
curves. 

 

Figure 4: Performance of the stationary RL agent post convergence with 
respect to “biological noise” for ITD values of 0.4 and 0.75 

In addition to biological noise, “measurement noise” was 
simulated through the addition of white Gaussian noise to 
the output firing rates generated by the model.  
Measurement noise simulated the uncertainty introduced 
in accurately measuring the neural signals due to 
degradation of electrodes or due to the presence of 
unwanted external noise. 

The magnitude of this noise is specified by its signal-to-
noise ratio (SNR), given in dB. Performance of the 
stationary RL agent was evaluated for ITDs of 0.4 and 
0.75 with respect to the measurement noise. The standard 
deviation of the biological noise for both modulated and 
baseline currents were set back to 1 for these simulations. 
Figure (5) shows that with a given ITD, the RL agent 
required a SNR of about 10dB to perform at its maximum 
capabilities for each ITD (i.e. a/b = 0.4 and 0.75). 

 

Figure 5: Performance of the stationary RL agent post convergence with 
respect to “measurement noise” for ITD values of 0.4 and 0.75 

• Offline adaptive RL  analysis:  

As stated in the methods, we co-adapted the neural 
ensemble wherein the ITD was changed at a rate of 22% 
per hour [12] whereas the preferred direction of the 
neurons also consolidated towards 4 target directions over 
time (a maximum of 90 degree per hour change in 
preferred direction was allowed). Following convergence, 
we let the stationary RL agent perform while the neural 
ensemble continued to adapt at the earlier specified rates. 
The RL agent performed at 94% success rate (success rate 
was calculated using only the last 25% of the trials) in a 
session that lasted for 2000 sec. Please note that the 
neural ensemble is still adapting throughout the 
simulation. 

• Loss of Neurons: 

The size of the neuronal population being recorded may 
change significantly over the lifetime of an implant and 
its effect on the BMI decoder’s performance is dire [16]. 
Therefore, we decided to test the RL agent’s performance 
robustness with a continually decreasing neural 
population. Tuning curves were generated for the 80 
neurons as described in the methods section. An ITD (a/b) 
of 0.75 was employed.  The RL decoder was either 
adaptive (learning rate maintained) or stationary (learning 
rate reduced to zero) after obtaining convergence on a 
neural ensemble in order to evaluate and compare the 
performance of the adaptive system with that of a 
stationary system when dealing with the loss of neurons. 
Following an initial simulation of 600 trials utilizing all 
80 neurons of the ensemble, the MLP’s converged 
weights were carried on into various simulations, each 
with a loss of x% neurons per simulation (where, x = 5% 
or 10% or 15% or...100% of the initial number of neurons 
in the ensemble for a given simulation). Loss of a neuron 
meant that its firing rate was set to zero for all 600 trials 
post convergence.  Twenty iterations were performed for 
every possible value of ‘x’ in order to average out epoch-
to-epoch fluctuations in performance. The order in which 
inputs were dropped was random. Since the order in 
which the neurons were dropped could have a significant 
effect on subsequent performance, this test was performed 
ten times using ten different randomly-generated orders. 
Figure (6) displays the average performance over the ten 
tests. For large neuronal loss, the adaptive RL agent was 
seen to have little effect on performance over the 
stationary RL agent apparently because the corresponding 
neural representation was too limited.  Likewise, for very 
few dropped neurons, the adaptive RL agent does not 
significantly improve performance over the stationary RL 
agent because all movement directions were still well-
represented. The largest gain in performance by 
maintaining adaptive nature of the RL agent was achieved 
around a loss of half of the initial number of neurons.  In 
these cases, enough directional representation remained 
for the adaptive RL agent to remap its functional 
relationships from the reduced set of inputs.  
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Figure 6: Performance comparison of an adaptive RL agent against 
a stationary RL agent as a function of loss of neurons 

IV. CONCLUSIONS: 
	  	  	  

For an Izhikevich Tuning depth above 0.75, the RL agent 
provided us with a performance above 95% for a neural 
ensemble consisting of 80 neurons. The performance is 
maintained above 80% even with high biological and 
measurement noise. The RL agent was also capable of 
maintaining its performance with almost a 40% loss in 
neurons for a given level of biological and measurement 
noise. The simulations suggest that if the neural ensemble 
adequately represents (modulates) for a given target plane 
then the RL agent will be capable of obtaining and 
maintaining convergence from a naïve state.  The offline 
simulations conducted here facilitated a systematic study 
of the system convergence, parameters, and performance 
in the presence of varying biological ensemble signal 
reliability. Now that the foundations have been 
developed, our goal is to carry out closed-loop 
experiments engaging the motor and sensory cortices with 
reinforcement learning. 
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