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Abstract— In this study we show how healthy subjects are
able to use a non-invasive Motor Imagery (MI)-based Brain
Computer Interface (BCI) to achieve linear control of an upper-
limb neuromuscular electrical stimulation (NMES) controlled
neuroprosthesis in a simple binary target selection task. Linear
BCI control can be achieved if two motor imagery classes can
be discriminated with a reliability over 80% in single trial.
The results presented in this work show that there was no
significant loss of performance using the neuroproshesis in
comparison to MI where no stimulation was present. However,
it is remarkable how different the experience of the users was
in the same experiment. The stimulation either provoked a
positive reinforcement feedback, or prevented the user from
concentrating in the task.

I. INTRODUCTION

Neural prostheses are assistive devices able to substitute

a damaged motor function caused by a high level spinal

cord injury or by genetic neuromuscular / neurodegenerative

diseases. Upperlimb neuroprostheses, for example, allow

severely motor impaired people to reacquire interacting capa-

bilities with the environment, improving their quality of life.

The functionality of the damaged limb is typically recovered

using NMES. These devices can be operated with a manual

switch, movements of a non-damaged muscle or by a residual

muscle activity (electromyography), supporting with NMES

the user intention (cf. [1], [2], [3]).

A novel proposal for users without voluntary muscle

control is Brain-computer Interfaces. BCIs are systems that

aim to provide control over a computer application or a

neuroprosthesis by solely means of brain activity. Using a

MI-based BCI to operate a NMES neuroprosthesis has been

already successfully reported by [4] and [5]. However, these

works did not report the linear control of the neuroprosthesis

during NMES, but rather a sequential operation for the

restoration of hand grasp function in a tetraplegic patient in

[4] or the turning on/off of the stimulation by MI to trigger

hand (and thumb) opening and closing in [5].
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Another option to recover the impaired functionality of

a limb are robotic devices. A recent study ([6]) confirms

the feasibility of a MI-BCI controlled robotic arm to assit in

reaching and grasping tasks in chronic tetraplegics. However,

the control is also based in a sequencial operation.

By linear control we understand the real-time computation

of the neuroprosthesis position from the MI classifier output.

The real-time nature of the task, makes the operation more

challenging, and it is also more demanding for the user.

We expect to accomplish effective linear BCI control when

two imagery classes can be distinguished with a reliability

over 80% in single trial. Above this threshold the output

of the classifier can be used to determine in real time

target positions on a given trajectory. Depending on the

BCI control quality, the user can gain control of the exact

stopping point of a movement along a trajectory. The number

of targets effectively implemented strongly depends on the

classification accuracy reached in the calibration phase by

the individual subject.

We performed experiments with healthy users that

operated an upper-limb neuroprosthesis in a simplified

linear control version: a 1-dimension trajectory with two

targets. The experiment was divided in two sessions: in

the first one, a virtual arm was controlled by MI and in

the second one a real NMES neuroprosthesis was used.

The results of this first successful attempt to achieve linear

control are reported, setting the baseline for further research.

II. METHODS

A. Data Processing and Classifier Training

The parameters needed to calculate a classifier to discrim-

inate MI activity are frequency band of interest, time interval

where the class discrimination is maximized and spatial fil-

ters. These parameters are subject-specific and an optimizing

procedure is used in order to find them. Particularly, we use

the methods described in [7], [8], [9].

After the signal is filtered in the optimal frequency and

epoched in the computed time interval, it is spatially filtered

using Common Spatial Patterns (CSP). CSP is a technique

used to analyze high dimensional data based on recordings

from two classes (in this study, EEG acquired from 60 scalp

electrodes). It yields a data-driven supervised decomposition

of the signal x(t) parametrized by a matrix W that projects

the signal from the original sensor space to a surrogate sensor

space: xCSP (t) = x(t) ·W .

To calculate the matrix W we need the sample covari-

ance matrices of the band-pass filtered EEG signals of two
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different motor imagery tasks Σ+ and Σ
−

.

Σ+ ·W = (Σ+ +Σ
−
) ·W ·D (1)

where D is a diagonal matrix.

Then, by simultaneously diagonalizing these matrices such

that their eigenvalues sum 1, one can compute the filters

for the CSP projections. The CSP filters maximize the

variance of the spatially filtered signal under one task while

minimizing it for the other task. Since the variance of a band-

pass filtered signal is equal to band-power, CSP analysis is

applied to band-pass filtered signals to obtain an effective dis-

crimination of mental states that are characterized by event-

related synchronization and desynchronization (ERD/ERS)

effects ([9]).

The obtained features are used to train a Linear Discrim-

inant Classifier (LDA) which has been shown to be a good

classifier for motor imagery BCI data (See [8], [10]). For

two equally distributed classes it is computed as follows:

o = w⊤
· x+ b (2)

w = Σ
−1

· (µ+ − µ−) (3)

Σ = Σ+ +Σ
−

(4)

b = −0.5 · (µ+ + µ−)
⊤
·w (5)

where the output o is the distance of the feature vector x to

the decision hyperplane perpendicular to w. The location of

the plane is defined by the bias b. If the o is negative, the

class is −, otherwise, the class is +. Σ+ and Σ− are the

covariance matrices of the features of each class. Finally µ−

and µ+ are the mean values of the features of each class.

B. Electrical Stimulation

NMES was generated by a Hasomed Rehastim 2 with

biphasic, rectangular constant current pulses at 50Hz. The

amplitude of the stimulation for each electrode was selected

for each user after a NMES calibration recording that took

around 5 minutes and ranged from 5 to 20 mA. To elicit

movement, 4 electrodes were placed on the deltoid muscle:

one on the anterior division (medial rotation), one on the

posterior (lateral rotation) and one on the medial division

that contributed to both movements. The fourth electrode was

placed on the base of the muscle to conduct the electrical

current.

C. Experimental Procedure

Data were recorded in two sessions from 12 healthy BCI-

novices. The brain activity was acquired from the scalp with

multi-channel EEG amplifiers using 60 Ag/AgCl electrodes

in an extended 10-20 system (with more density in the

sensorymotor area) sampled at 1000 Hz with a band-pass

filter from 0.05 to 200Hz For two users no feedback was

performed in the first session since they were not able to

achieve enough performance during the calibration phase

(see BCI inefficiency, [11]). Accordingly, these two subjects

did not participate in the second feedback session.

In both sessions, the users first performed MI of 3 limbs

(left/right hand and feet) within a calibration session. Ap-

proximately every seven seconds one of three different visual

Fig. 1. Screenshot of the feedback in the first session. The trial was
considered successful if the user could hold the arrow above a threshold
(depicted as the red line) for a specific amount of time.

cues (arrows pointing left, right, or down) indicated to the

participant which type of motor imagery task to perform. A

15s break followed after every 20 trials. One run consisted

of 75 trials (25 trials/class) and a total of 3 MI runs were

recorded, resulting in 225 trials.

In order to reduce the impact of the afferent brain activity

elicited by NMES (cf. [12]), a limb not involved in the MI

task was used for the neuroprosthesis. For this reason, after

the calibration phase, only two combinations of classes (left

hand vs. foot or foot vs. right hand) were considered. The

pair with best predicted performance was selected to perform

the feedback task.

1) Session 1: The feedback recording consisted of the

control by means of MI of a virtual arm in a screen in front

of the user (see Fig. 1). Different visual cues (left arrow

or right arrow) indicated in which direction the virtual arm

should be moved. A maximum time of 20 seconds was given

to reach the target in each direction.

2) Session 2: During the feedback, an Hocoma

ArmeoSpring device ([13]) was used for gravity compen-

sation (see Fig. 2). It provided one degree of freedom at

the shoulder, that allowed movement in a 1-D trajectory.

Since this work studies the feasibility of linear control, and

a simplified task (with only 2 targets) was performed, no

exact position was calculated. Instead, the continuous output

of the classifier (Eq. 2) during the active trial time was

translated into the position of the cross in the screen and into

the necessary stimulation amplitudes (linear combination of

the position difference and the stimulation parameters) to

achieve movement in the same direction and, aproximately,

same speed as the cross. The stimulation amplitudes were

defined by:

io(t) =
t−1
∑

i=0

o(i) + o(t) (6)

X(t) =





abs(max(0, γant · io(t))
γmed · io(t)

abs(min(0, γpost · io(t))



 (7)
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Fig. 2. In the first session (top), the user was asked to move a virtual
arm in a screen that simulated the selection of two targets (left/right). In the
second session (bottom) the arm not involved in MI was controlled directly
by the classifier output using the ArmeoSpring. The green line depicts the
trajectory of the neuroprosthesis.

where the matrix X is the amplitude applied to each muscle

(anterior, medial and posterior), t is the time in the active

period in the trial, γx are scalars that weight the stimulation

for each muscle, and io(t) is the integrated output of the

classifier.

After each trial, the user was asked to return the arm

back to the initial position.

Both feedback sessions consisted of 4 runs of 50 trials

each. The trial was considered successful if the user could

hold the arrow above a subject-selected threshold (depicted

as a red line) for a specific amount of time (also subject-

dependent). These two parameters were empirically adjusted

in a previous 5 minutes recording, where the volunteers tried

out several values. If required, the parameters were corrected

during the experiment. The trial was considered unsuccessful

in two different situations: if the user did not move the arm

in the correct direction (miss), or if the threshold was not

reached or maintained long enough (reject).

By default, the bias of the classifier (Eq. 5) was updated

using the ”pmean” method ([14]), and the classifier

obtained in the calibration session was manually re-biased
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Fig. 3. This scatter plot depicts the error rates of the first (x-axis) and
the second (y-axis) feedback sessions. All values above the diagonal show
that session 1 is better than session 2. Additionally, the error rates in both
sessions (red for session 1 and blue for session 2) of two subjects are
shown. Subject F (bottom) increased the accuracy in the second session
reaching a perfect control. Subject D (top), on the other hand, suffered
from a performance drop.

if necessary.

III. RESULTS

Accuracy (% of successfully completed trials) was used

as performance measure for the experiment. The results of

the 10 (out of 12) users that could complete both feedback

sessions are summarized in Table I. Although the mean accu-

racy of session 1 is higher than in the second, a Wilcoxon-test

reveals that this difference is not significant (p=0.14).

Regarding the average values in Table I, it is worth

noticing that although the number of rejects differs only

slightly between sessions, the number of misses is twice as

high in the second. The standard error is also much higher in

this case, which suggests that the variability between users

increases with the stimulation.

The results are presented in more detail in Fig. 3, which

shows the scatter plot of the error rates in both sessions. It is

noticeable that two users completely lost control of the sys-

tem when the stimulation started, reaching only performance

at chance level. The session 1 accuracy of subject H was

around 70%, which showed not to be sufficient to achieve

control in session 2 (a MI performance of 80% or more is

desirable). This does not mean that all users who achieve less

than 80% will lose control with an neuroprosthesis, but the

undisturbed MI performance is a good indicator of success

or failure.

Subject I , on the contrary, had a very good accuracy

during session 1. However, during session 2 he reported that

it was not possible for him to concentrate in the task when
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TABLE I

ACCURACY RESULTS OF THE TWO FEEDBACKS SESSIONS FOR THE 10 USERS THAT COMPLETED BOTH SESSIONS.

SESSION 1 SESSION 2

Subject Hit Miss Reject Hit Miss Reject

A 89.00 5.00 6.00 87.00 7.50 5.50

B 92.00 5.50 2.50 95.50 3.50 1.00

C 85.50 10.50 4.00 82.00 6.00 12.00

D 92.50 1.50 6.00 73.50 16.50 10.00

E 94.50 5.00 0.50 84.00 6.50 9.50

F 93.00 5.50 1.50 99.00 0.50 0.50

G 88.50 5.50 6.00 91.50 4.00 4.50

H 70.50 7.50 22.00 51.00 10.00 39.00

I 88.50 5.50 6.00 55.91 10.22 33.87

J 88.00 5.00 7.00 91.50 3.00 5.5

MEAN ± SE 88.20% ± 2.15 6.15% ± 1.90 5.65% ± 0.71 81.10% ± 5.14 12.15% ± 4.24 6.75% ± 1.44

Fig. 4. Scalp maps of r2-values of the selected MI classes of two users
during the on-line phase in session 1 (left) and session 2 (right). Subject
A exhibited a good performance in both sessions. Although the subject I
had a good performance in the first session, he was not able to generate MI
activity and, therefore, lost control of the system in the second.

the arm was being moved because the simultaneous NMES

was very disturbing to accomplish the task. Therefore, he

was not able to generate MI activity (see Fig. 4). Finally,

subject D experienced a performance drop from around 90%

to around 75%. This last value is not as good as expected,

but the control is better than chance and still better than

the psychological limit of 70% (cf. [15]). Additionally, for

this user the arm could not be properly fixated due to his

corpulence, and the intensities needed to induce movement

were very high compared to the ones used with the other

users. Therefore, a better performance could be expected

with an appropriately sized orthosis.

The rest of the users (7 out of 10) exhibited very similar

or even better performance using the neuroprosthesis as

compared to controlling the virtual arm. They reported that

the movement to the correct direction positively reinforced

the feedback in contrast to session 1. This difference was,

however, not significant (p=0.41).

IV. CONCLUSIONS

In this first study we have shown how healthy subjects are

able to use a non-invasive MI-based BCI to achieve a simple

linear control of an upper-limb NMES neuroprosthesis in a

binary target selection task.

Despite of the stimulation, most of the subjects were able

to perform the MI task in the second session with a high

accuracy. Furthermore, there was no significant difference in

comparison to undisturbed MI where the feedback was mov-

ing a virtual arm. Nevertheless, we need to take into account

that these users had good or very good discriminability of

two MI classes, and even then 2 out of 10 completely lost

control of the system.

The fact that a high performance is necessary to success-

fully control a NMES neuroprosthesis is critical for clinical

practice purposes, since it is known that in patients MI

patterns are weaker and more unstable (cf. [16], [17]). For

users for whom it is not possible to achieve control of

the BCI, co-adaptation techniques or other paradigms like

event-related potentials (ERP) or steady state visually evoked

potentials (SSVEP) should be considered ([11], [18], [19]).

It is also remarkable how different the experience within

users was during the second session. One user was not

able to concentrate in the task due to the disturbance of

the stimulation, whereas others described the benefits of the

NMES as ”reinforcement” feedback.

Having demonstrated the feasibility of achieving linear

control of a neuroprostheshis, as a next step, we will use

machine learning techniques to robustify the classifier

against the stimulation noise and study more realistic

scenarios with more than two targets, in which the accuracy

of the position is of much higher importance. Therefore,

a proportional-derivative (PD) controller will be used

(cf. [20]), in order to obtain an accurate control of the

neuroprosthesis position.
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