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Abstract²Conductance catheters are known to have a 

nonuniform spatial sensitivity due to the distribution of the 

electric field. The Geselowitz relation is applied to the murine 

conductance catheter using a finite element model to determine 

FDWKHWHU¶V�spatial sensitivity in uniform media. Further analysis 

of FEM numerical modeling results using the Geselowitz 

relation provides a true measure of parallel conductance in a 

simplified murine left ventricle for assessment of the 

admittance method and hypertonic saline techniques. The 

spatial sensitivity of blood conductance (Gb) is determined 

throughout the cardiac cycle. Gb is converted to volume using 

:HL¶V� HTXDWLRQ� WR� GHWHUPLQH� LI� WKH� SUHVHQFH� RI� P\RFDUGLXP�

alters the nonlinear relationship through changes to the electric 

field shape. Results show that the admittance method correctly 

calculates Gb in comparison to the Geselowitz relation, and that 

the relationship between Gb and volume is accurately fit using 

:HL¶V�HTXDWLRQ� 

I. INTRODUCTION 

IOIMPEDANCE measurements are often used to 

indirectly monitor physiologic processes such as 

respiration or blood volume. The conductance catheter 

technique was introduced by Baan et al [1] as a method to 

continuously measure left ventricular (LV) volume. The 

technique places a multi electrode catheter in the LV and 

measures the conductance using a tetrapolar measurement. 

Since the resulting conductance cannot be directly converted 

to volume, stroke volume measurements are typically used 

in the conversion of conductance to volume. 

Blood, muscle and surrounding tissues are included in the 

conductance measurement as the electric field extends 

outside the LV blood pool [2, 3]. Conductance outside the 

LV blood pool, referred to as parallel conductance, causes 

error in the volume measurement. 

Plethysmography instruments commonly measure the 

magnitude of impedance, neglecting the complex nature of 

tissues. Cardiac and skeletal muscle exhibit significant and 

observable permittivity at frequencies above 2 kHz [4, 5], 

which is an important consideration in plethysmography 

measurements. 
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0XVFOH¶V� KLJK� SHUPLWWLYLW\� LV most likely due to the 

transmembrane charge distribution. Charge is 

electrochemically bound to the membrane and forms a 

dipole which reacts to the application of time-varying 

electric fields. 

Two techniques are commonly used to remove parallel 

conductance:  1) the hypertonic saline method and 2) the 

admittance method [6]. 

The hypertonic saline technique injects a small saline 

bolus into the jugular vein. As the bolus enters the LV, the 

high saline conductivity increases the measured conductance 

from the LV catheter while the SV is unchanged. End 

diastolic (ED) and end systolic (ES) conductance are used to 

project the parallel conductance. 

The admittance method uses the complex nature of muscle 

to remove parallel conductance [6]. Measured admittance 

consists of three components, � L )Õ E )à E Fñ%à, where 

)Õ is the conductance of blood, )à is the conductance of 

muscle and ñ%à is the susceptance of muscle. Since the 

imaginary component arises solely from the muscle, the 

conductivity to permittivity ratio of muscle can be used to 

isolate blood conductance, )Õ L 4A<�= F kêà ñóàW o+I<�=. 
Finite element analysis of plethysmography measurements 

is normally performed through calculation of the measured 

impedance, ignoring the spatial sensitivity of the 

measurement. Tetrapolar measurements exhibit complex 

sensitivity fields due to separation of the current carrying 

and voltage sensing electrodes. This paper addresses the 

spatial distribution of the measurement sensitivity. 

II. METHODS 

A. Impedance Formulation 

Electrical properties are commonly defined with respect to 

a bulk measurement. A medium with finite conductivity and 

permittivity is modeled as a parallel resistor-capacitor 

network. Electric conductance, ), and capacitance, %, are 

defined as, 
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where I is the applied current [A], V is the measured voltage 

[V], Q is the charge [C], 1 is the conductivity [S/m], ë is the 

permittivity [F/m] and E is the electric field [V/m]. The 

surface S is any complete cross section between the current 

carrying electrodes and the line integral is any path between 

the voltage sensing electrodes. 

 This bulk definition may lead one to incorrectly conclude 

that the measurement is confined to the region between the 

equipotential surfaces formed by the voltage sensing 

electrodes [7]. Property variations between each pair of 

current-carrying and voltage-sensing electrodes contribute 

significantly to the total measurement. Another definition of 

impedance is necessary to quantify the spatial variations to 

the total measurement. 

The relationship between the measured impedance and the 

local properties in a domain has previously been explored 

for the tetrapolar measurement [8, 9]. These derivations used 

a volume conductor model. Here we expand the derivation 

to semiconducting dielectrics. We first define a region with 

finite conductivity, ê, and permittivity, óä Four electrodes 

are placed on the surface of the medium. The current, I, is 

applied between terminals A and B which results in the 

electric potential distribution î:�;, where � is the location. 

Alternatively, applying the same current between electrodes 

C and D results in the potential distribution ð:�;. The 

measured impedance is the same under linear conditions, 

due to reciprocity, if the current and potential electrodes are 

swapped. This is only valid for the case where the positive 

current electrode is swapped with positive voltage electrode 

and the negative current electrode for the negative voltage 

electrode. 
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7KLV� GHULYDWLRQ� FORVHO\� IROORZV� /HKU¶V� PHWKRG�� RQO\� ZH�

substitute the combined translational and displacement 

current densities, vÛ L :ê E Fñó;q, rather than just the 

translational current, v L êq. Substituting ð:ê E Fñó;qÐ 

into the divergence theorem, and working toward a 

formulation of the measured impedance. 
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Since there are no sources within the medium,  

Ï ® c:ê E Fñó;qÐg L r. 
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We can neglect the normal component of the electric field 

on the surface at all points other than the applied current 

source. Assuming the current is supplied by a perfect 

conductor, we are left only with the applied current and 

potential. 
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If we divide both sides of the equation by +6 and substitute 

'�� for Ïðá 
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We can manipulate this equation to aid its interpretation by 

formulating it in terms of the combined translational and 

displacement current densities, vÐ
Û  and vÒ

Û , rather than the 

electric fields. 
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This equation reflects the measured impedance as would be 

observed in a tetrapolar configuration and can be applied to 

a domain with non uniform properties. Local integrations of 

impedance only reflect the regions true impedance in 

domains oriented electrically in series. It is not valid for 

local integrations in parallel or mixed models since only part 

of the current is located in each domain, but the integration 

over the entire domain remains valid. 

Conductivity and permittivity add in parallel. It is therefore 

best to analyze results in terms of admittance, Y, rather than 

impedance. If we multiple equation (8) by Y
2
 the result is, 
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where V is the difference in potential between the 

measurement electrodes. 

Analysis of finite element models calculates blood and 

muscle conductance using two methods. First, the bulk 

admittance measurement is used with the admittance method 

to separate blood and muscle conductance, as would be done 

experimentally. Second, integration of the Re{Y}, from the 

Geselowitz relation, over blood and muscle subdomains 

calculates blood and muscle conductance separately. The 

resulting values of each method are compared. 

Gb is FRQYHUWHG� WR� YROXPH� XVLQJ� :HL¶V� HTXDWLRQ� [10]. 

Although finite element models have previously been used 

WR� YDOLGDWH� :HL¶V equation in an insulated cylinder, this 

model includes the surrounding muscle. 

B. Finite Element Models 

A tetrapolar mouse catheter is first analyzed in a uniform 

media to determine the distribution of the sensitivity field. 

Catheter dimensions are based on Scisense (London, 

Ontario) mouse catheters. 

The catheter is then placed in a simple cylinder model of 

the mouse left ventricle. Dimensions of the mouse LV are 

based on ultrasound measurements [11]. The outer muscle 

wall dimensions are held constant and the radius of the 

blood cylinder is varied to simulate volumes throughout the 

cardiac cycle. Calculations of Gb using the admittance 

method and the Geselowitz relationship are compared, and 

Gb LV�FRQYHUWHG�WR�YROXPH�XVLQJ�:HL¶V�HTXDWLRQ� 

The resulting geometry of the mouse LV is shown in Fig. 1 
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at diastole. Systole corresponded to a volume of 16 �/�DQG�

diastole to 48 �/��)XUWKHU�DQDO\VLV�LV�SHUIRUPHG�RYHU�D�UDQJH�

of 15 to 60 �/� 

 
Fig. 1. Mouse conductance catheter in a cylindrical model of the 

mouse LV. 

Analysis of the sensitivity distribution in the blood cavity 

is performed through computation of the contribution each 

segmental volume makes to the total Gb. This is performed 

by integrating the impedivitity-sensitivity product, the 

integrand in equation 8, over cylinders with a radius that 

extends to the endocardium and a height of 0.25 mm. 

Values used for conductivity and permittivity for each 

domain are shown in Table I. Blood and muscle properties 

are from measurements by Raghavan et al [4]. 

 
Table I 

Subdomain properties 

Subdomain Conductivity (S/m) Relative Permittivity 

Blood 0.46 80 
Muscle 0.16 11,800 

Surroundings 0.10 80 

Catheter (polymide) 10-12 2 

 
Fig. 2. Product of impedivity and sensitivity for the mouse catheter 

in a uniform field. The linear scale is allowed to saturate to 

show the negative sensitivity zones. 

III. RESULTS 

A. Murine Catheter without Surroundings 

Analysis of the mouse catheter in a uniform field is shown 

in Fig. 2. This formulation shows the spatial contributions to 

the total admittance, the integrand in equation 8 (the 

impedivity-sensitivity product). The integrand is the product 

of the local impedivity and sensitivity. Changes in the 

measured admittance due to variations in local properties are 

determined by the local sensitivity. Results show the 

measurement is heavily weighted by the regions in close 

proximity to the electrodes. Small negative sensitivity fields 

(blue) are located in the regions between the pairs of current 

carrying and voltage sensing electrodes. 

The impedivitiy-sensitivity product in the mouse LV is 

shown at 15 �/�LQ�)LJ����WR�YLVXDOO\�HPSKDVL]H�WKH�UHPRYDO�

of muscle using the admittance method. Prior to removal of 

the muscle signal, the muscle domain clearly contributes to 

the measurement. Following removal using the admittance 

method, the contribution of the muscle domain is greatly 

reduced (darker gray). 

 

Fig. 3. Product of impedivity and sensitivity (top) and the product 

of Gb and sensitivity (bottom) at 15 �/. 

The relative contributions of each segmental volume in the 

blood cavity at various volumes are shown in Fig. 4. Each 

point corresponds to the integration over a cylinder with a 

radius equal to the blood pool and a height of 0.25 mm, 

swept across the long axis of the LV.  

As expected, the greatest sensitivity is located near the 

electrodes. The contribution of volumes between the 

electrodes is comparable throughout the cardiac cycle. 

Volume vs. Gb is plotted in Fig. 5. Points correspond to the 

data IURP�7DEOH���DQG� WKH� OLQH� LV�:HL¶V�HTXDWLRQ�FDOLEUDWHG�

using the 15 �/ and 60 �/ data points. The Geselowitz and 
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admittance methods produce nearly identical results. 

Hypertonic saline simulations result in a parallel 

FRQGXFWDQFH� RI� ���� �6, larger than the true parallel 

conductance from the Geselowitz relation. The least squares 

fit results to the end-systolic and end-diastolic conductance 

is *(6 �������Â*('�������, with R
2 
= 0.99998. 

 
Fig. 4. Percent contribution to Gb vs. displacement showing the 

nonuniform sensitivity. 

 
Fig. 5. :HL¶V� HTXDWLRQ� ILW� WR� WKH�Gb data from the mouse catheter 

with no surroundings. Calibration is applied using the SV 

and Gb data between 15 and 60 �/. 

Table II 

Mouse Model Results 

 Admittance Method Geselowitz Relation 

Volume (�/� Gb (�6) Gm ��6� Gb (�6) Gm ��6� 

15 298.4 344.6 298.7 344.3 
30 517.8 260.8 518.7 259.9 

45 680.7 194.3 682.1 192.8 

60 807.3 143.7 809.1 141.9 

IV. CONCLUSION 

Spatial sensitivity analysis of the admittance method was 

performed using the Geselowitz relation formulated for 

complex media. The murine conductance catheter exhibits 

the highest sensitivity near the stimulating and sensing 

electrodes. Negative sensitivity zones exist between each 

pair of stimulating and sensing electrodes.  

Model results show that the admittance method correctly 

removes parallel conductance and that the hypertonic saline 

method overestimate parallel conductance throughout the 

cardiac cycle. Gb errors using the admittance method are due 

to the true model being a mixture of parallel and series 

combinations of blood and muscle. Agreement between Gb 

from the admittance method and Geselowitz relation shows 

that the conductance catheter sensing domains are accurately 

represented by a parallel model. Further analysis quantifies 

the nonlinear sensitivity along the catheter, showing the 

highest sensitivity near the electrodes that does not change 

significantly over the cardiac cycle. 

:HL¶V�HTXDWLRQ�FRUUHFWO\�ILWV�*b, showing that the equation 

is not affected by changes to the field geometry due to the 

presence of the myocardium.  

Traditional interpretation of conductance catheter 

measurements assumes sensitivity is confined to the area 

between the voltage sensing electrodes. Catheter design may 

be evaluated using the Geselowitz relation to develop new 

configurations that distribute sensitivity more uniformly. 
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