
  

 

Abstract—Cosegmentation aims to simultaneously segment 

the common parts in a pair of images, and has recently attracted 

increasing research attention in the field of computer vision. In 

this paper, we propose a novel deformable cosegmentation 

(D-C) algorithm to solve the brain MR image segmentation 

problem by cosegmenting the image and a co-registered atlas. In 

this manner, the prior heuristic information about brain 

anatomy that is embedded in the atlas can be transformed into 

the constraints that control the segmentation of brain MR 

images. Based on the multiphase Chan-Vese model, the 

proposed D-C algorithm is implemented using level set 

techniques. Then, it is compared to the protocol algorithm and 

the state-of-the-art GA-EM algorithm in T1-weighted brain MR 

images corrupted by different levels of Gaussian noise and 

intensity non-uniformity. Our results show that the proposed 

D-C algorithm can differentiate major brain structures more 

accuratly and produce more robust segmentation of brain MR 

images. 

Index Terms—Image cosegmentation, Magnetic resonance 

imaging, deformable model 

I. INTRODUCTION 

Segmentation of the brain volume into gray matter (GM), 
white matter (WM), and cerebrospinal fluid (CSF) in magnetic 
resonance (MR) images plays an essential role in both 
neuroimaging research and clinical practices. Since the 
manual segmentation performed by medical professionals is 
time-consuming, expensive and subject to observer 
variability, automated brain MR image segmentation has been  
studied extensively. A number of segmentation algorithms 
have been proposed in the literature, which can be roughly 
classified into (a) atlas-based [1-3], (b) statistical [4-6] and (c) 
deformable model based [7-9]. 

The basic idea of atlas-based segmentation algorithms is to 
generate an “average” brain structure representation, i.e. an 
atlas, from the training image set or anatomy, and then to map 
the anatomical structure from the atlas to the to-be-segmented 
image through co-registration [2]. However, the performance 
of these algorithms is limited by the anatomical variation 
across individuals and the accuracy of atlas generation and 
registration. In statistical segmentation algorithms, brain voxel 
values are generally assumed to follow a statistical model, 
whose parameters can be estimated according to certain 
criteria, such as the maximum likelihood principle. Based on 
the estimated model parameters, voxels can be classified into a 
particular brain tissue type by using the Bayes classifier. 
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Despite their prevalence, these algorithms face the difficulty 
of incorporating the anatomical information into the 
segmentation process. Geometric deformable model based 
algorithms convert the problem of segmenting an image into 
that of evolving a boundary curve through minimizing the 
associated energy function. Due to the complexity of curve 
evolution, level set theory based techniques are often used to 
solve this optimization problem. A typical example is the 
Mumford-Shah segmentation algorithm [7], which assumes 
that the best decomposition of an image is its optimal 
piecewise smooth approximations and uses the level set 
method for the curve approximation. As a modification to this 
algorithm, the Chan-Vese model [8] incorporates the edge 
function into the classical active counter algorithm to 
effectively and robustly segment noisy images without smooth 
boundaries. Vese and Chan [9] has further extended the 
two-phase level set model to a multiphase model for 
multiclass segmentation problems.  

Recently, the idea of “cosegmentation” has attracted 
increasing research attention, which aims to simultaneously 
segment the common parts in a pair of images by taking the 
advantages of processing each image with the additional 
constraint derived from the other image. The cosegmentation 
task can be formulated as an optimization problem that 
minimizes the combination of two energy terms [10-12]. The 
data modality term is usually defined as the normalized 
difference between the histograms of both images, whereas 
the spatial regularization term is often derived based on the 
Markov random field (MRF) model. Meng et al. [13] futher 
researched on sloving the co-segmentation problem via active 
counters. 

When the prior anatomical information is interpreted by a 
brain atlas, it is intuitive to apply cosegmentation techniques 
to the segmentation of brain images, i.e. simultaneously 
delineating major brain structures in a test image and a 
reference image generated by using both its statistical 
information and the co-registered atlas. In this way, the prior 
anatomical information embedded in the atlas can be used as 
constraints in the segmentation process. Motivated by this idea, 
we propose a novel deformable cosegmentation (D-C) 
algorithm for delineating GM, WM and CSF in brain MR 
images. Specifically, we modified the multiphase Chan-Vese 
model by including both the statistical and shape information 
of the image pairs into the energy function. Then, we 
compared the proposed D-C algorithm to the protocol 
algorithm [9] and the state-of-art GA-EM algorithm [6] in 
T1-weighted brain MR images from BrainWeb [14]. 

II. METHOD 

A. Related Works 

Let us first recall the Mumford and Shah model and 

Chan-Vese model. Let        be the
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A curve   is defined as a closed subset in  , which 
consists of two regions: the foreground     and 

background     . Mumford and Shah model aims to 
segmentation the image into foreground and background by 
evolving the curve   through minimize the following 
objective function [7] 
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where   is the optimal piecewise smooth approximation of the 

initial image  , and  | | length   

Chan and Vese [8] proposed a level set based 

representation of Eq. (1) by  the segmented image   
to be piecewise constant functions, i.e. if (   )     ,  
 (   )    ; otherwise  (   )    . Thus, the objective 
energy function in the Chan-Vese model can be written as 
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Vese and Chan [9] have further extended their research 
and proposed the multiphase Chan-Vese model for multi-class 
image segmentation. In this moedel, an image   can be 
devided into   regions by evolving a collection of counters 
  (           ) via minimizing the following energy  
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where        ,    is the mean voxel value in the region 

  , and   (          ). 

B. D-C Model 

Cosegmentation algorithms aim to simutously segment 
similar target regions in a pair of images. For brain image 
cosegmentation, we need a prepocessing step to generate a 
reference image for each test brain image. 

To use the prior anatomical information embedded in the 
brain atlas, we construct a reference image for each brain 
image using the co-registered atlas and its own statistical 
features. We assume that the overlapped region between the 
hard segmentation results gained by the atlas and the statistical 
method is the stable segmented area. Specifically, we use the 
K-means method to acquire the initialized segmentation 
results with the mean value of each class. At the same time, the 
atlas of each tissue is normalized and set the voxel values over 
0.5 as a hard segmentation for each class. Therefore, the 
reference image is generated by setting its voxel values in the 
stable segmented area to the corespanding mean value and that 
of the other regions the same as the original ones. 

Let the image pair of the test image and the constructed 
reference image be denoted by   {     } . We use the 
evolving counters   (      ) to delineate GM, WM and 

CSF from background in each image. These three regions and 

the background are denoted by          and   , 
respectively. In the D-C model, the energy function for the  th 
image is as follows 
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where     is the  th region in image    , and  (   )  is the 

mean voxel value in  th region in image      . The pair of 
images can be jointly segmented through minimizing both 
energy functions, shown as follows 
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C. Energy Minimization 

Following the formulation of the multiphase Chan-Vese 
model [9], we use the level set approach to solve the 
cosegmentation problem given in Eq. (5). In each image, the 
evolving curve   is represented by the zero level set function 
  {(   )| (   )   } , where the function       is 
positive for the points within the region   and is negative for 
the points outside  . 

With the Heaviside function  ( ), which equals with 0 if 
    and with 1 if    , the length of curve C can be 

expressed as | |  ∫ |  ( )|
 

     . For the  th counter of 

image    , we have     {(   )         (   )   }   
{   },    (       ). Then, the level set formulization of 
the D-C algorithm can be expressed as follows 
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It should be noted that, different from the classic multiphase 
level set approach, the energy formulation for each image is 
computed using the voxel means calculated in the other image. 
In this way, the information in both the test image or reference 
image can mutually benefit the counter evolvlution in the 
other image.  

With the associated Euler-Lagrange equations, 
parameterizing an artificial time t as the descent directions, 
given the initial curves   (     ) , and set     , we can 
use the following rules to perform curve evolution in the 
image pair. Readers are referred to Ref. [9] for more 
computational detailes.  
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D. Overview 

In preprocessing, a reference image for each test brain MR 
image is generated. Then, each test image and its reference 
image compose an image pair. With this image pair, the 
proposed D-C algorithm can be applied to brain segmentation 
in four steps.  

First, we initialize the boundary of each region in the 
image using the achieved stable segmentation results in the 

preprocessing step and calculate   (     ) and   
  for each 

image in the image pair. Therefore, the initial counters are 
defined by the overlapped regions of GM and WM between 
the atlas and the K-means initialization. Second, the level set 
function    (     ) is updated based on to   (       )  
and   

    according to Eq. (8). Third, the constant vector   
  is 

computed by using Eq. (7). Fourth, the energy of the D-C 
algorithm can be calculated by using Eq. (6). Then, the second, 
third and fourth steps are iteratively repeated until the stopping 
criterion is met. Here, the stopping criteria are either that the 
optimizing results keep the same for 20 iterations or the total 
iteration number reaches a limit. Based on our parametric 
studies, the limit number is set as 300. 

The overall segmentation process can be summarized in 
Algorithm 1. 

Algorithm 1: D-C algorithm for image segmentation 

Preprocess: construct a reference image using the co-registered atlas    
and the statistical segmentation results; 

For image pairs    {        }, simultaneous execute:  

1. Initialize:  compute   (     ) and   
 ; 

For each iteration: 

2. Update level set function   (     )  corresponding to   (  
     )  and    

    using Eq. (8); 

3. Update    
  with   (     ) using Eq. (7); 

4. Calculate the energy     
 (      ) in Eq. (6) 

5. Repeat Steps 2 to 4 until a stopping criterion is met. 

III. EXPERIMENTS AND RESULTS 

The proposed D-C algorithm has been tested in simulated 
T1-weighted brain MR images from the BrainWeb [14]. Each 
image has a dimension of             and a voxel size 
of      mm

3
. In our experiments, we used the ICBM452 

brain atlas [15]. In each test, we first co-registered the atlas 
onto the test image by using the statistical parametric mapping 
(SPM) package [16], and then performed the co-segmentation 
of the image pair, consisting of the test image and the 
registered atlas. Since the ground truth for this segmentation 
task is available, we adopted the following Dice similarity 
coefficient (DSC) [17] to quantitatively assess the accuracy of 
the delineation of each brain tissue type. Meanwhile, we 
calculated the percentage of correctly classified brain voxels 
to measure the accuracy of the entire brain image 
segmentation. 

Fig. 1(a) shows a T1-weighted brain MR image with 3% 
noise and 20% intensity non-uniformity (INU). Fig. 1(b) and 
(c) depict and initial boundaries from brain atlas and the 
segmentaion result. It reveals that the boundaries are initially 
blurred and finally became complex enough to match the brain 
image. The constructed image pair is shown in Fig. 1(d). 
Compared to the original image, the image pair has avioded 
numerous kinds of artifacts in the stable segmented voxels, in 
the manner of which, balanced the comstraint from the atlas 
and the statistical information. Fig. 1 (e) gives the 
segmentation results applying multiphase Chan-Vese model 
based segmentation algorithm [9] to this test image, 
respectively. Fig. 1(f) shows the ground truth for this 
segmentation problem. It is clear that the result of the 
cosegmentation algorithm is much more similar to the ground 
truth than the result of the other algorithm. 

 
                 (a)                                     (b)                                     (c) 

 
                  (d)                                     (e)                                     (f) 

Fig. 1. Comparison between the proposed D-C algorithm and multiphase 
Chan-Vese model based segmentation algorithm: (a) A T1-weighted brain 

MR image with 3% noise and 20% INU; (b) Initial boundaries of the proposed 

algorithm; (c) Segmentation result of the proposed algorithm; (d) Generated 
image pair; (e) Result of the multiphase Chan-Vese model based algorithm; (f) 

Ground truth 

 
Next, we compared the D-C algorithm to the state-of-art 

GA-EM algorithm [6] in a group of T1-weighted brain MR 
images, which contain 1%, 3%, 5%, and 7% of Gaussian noise 
with 20% and 40% of INU, respectively. The accuracy of the 
cosegmentation algorithm in these images was listed in Table 
1. The accuracy of both algorithms in segmenting the GM and 
WM in brain images were compared in Fig.2 and Fig.3. It 
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shows that the propose algorithm substantially outperforms 
the GA-EM algorithm in the segmentation of GM and WM.  

TABLE I. ACCURACY OF THE PROPOSED SEGMENTATION ALGORITHM IN 

BRAIN MR IMAGES WITH DIFFERENT LEVELS OF NOISE AND INU   

Images 
1% Noise 

20% INU 

3% Noise 

20% INU 

5% Noise 

20% INU 

7% Noise 

20% INU 

Accuracy 97.36% 96.36% 94.26% 91.45% 

DSC of CSF 97.48% 96.42% 94.82% 92.71% 

DSC of GM 96.47% 95.11% 92.33% 88.51% 

DSC of WM 98.02% 97.30% 95.58% 93.33% 

Images 
1% Noise 

40% INU 

3% Noise 

40% INU 

5% Noise 

40% INU 

7% Noise 

40% INU 

Accuracy 95.80% 94.71% 92.70% 89.34% 

DSC of CSF 96.78% 95.68% 94.03% 91.75% 

DSC of GM 94.41% 92.93% 90.32% 86.05% 

DSC of WM 96.60% 95.79% 94.18% 91.26% 

 

 

Fig. 2. Comparison of the accuracy of the proposed D-C algorithm and 
GA-EM algorithm in GM delineation 

 

Fig. 3. Comparison of the accuracy of the proposed D-C algorithm and 
GA-EM algorithm in WM delineation 

IV. CONCLUSION 

This paper proposes the novel D-C algorithm for brain MR 

images. Our comparative experiments in T1-weighted MR 

images with different levels of Gaussian noise and INU 

demonstrate that the proposed algorithm is capable of solving 

multiclass image segmentation problems. Moreover, due to 

the use of an atlas as a reference, the proposed algorithm can 

achieve robust and much improved segmentation accuracy in 

highly corrupted brain MR images. In order to futher improve 

the segmentation performance by addressing the numerous 

kinds of artifacts, the INU and noise models can be included 

into the algorithm in the furture.  
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