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ABSTRACT 

 

We propose a new Bayesian classifier, based on the recently 

introduced causal Markov random field (MRF) model, 

Quadrilateral MRF (QMRF). We use a second order 

inhomogeneous anisotropic QMRF to model the prior and 

likelihood probabilities in the maximum a posteriori (MAP) 

classifier, named here as MAP-QMRF. The joint 

distribution of QMRF is given in terms of the product of 

two dimensional clique distributions existing in its 

neighboring structure. 20 manually labeled human brain MR 

images are used to train and assess the MAP-QMRF 

classifier using the jackknife validation method. Comparing 

the results of the proposed classifier and FreeSurfer on the 

Dice overlap measure shows an average gain of 1.8%. We 

have performed a power analysis to demonstrate that this 

increase in segmentation accuracy substantially reduces the 

number of samples required to detect a 5% change in 

volume of a brain region. 

 

Index Terms— MRF, Causal MRF, Quadrilateral 

MRF, MRI, brain image segmentation 

 

1. INTRODUCTION 

 

Brain neurodegenerative disorders such as Alzheimer's 

disease, schizophrenia, and multiple sclerosis are known to 

be correlated with deviations in neuroanatomical structures 

of the brain. The ability to quantify these changes in brain 

morphometry, particularly in longitudinal studies, depends 

heavily on the accuracy and reproducibility of the brain 

volumetric segmentation algorithm employed. The limited 

accuracy of existing brain MR image segmentation methods 

and the tedious, inconsistent, and time-consuming process 

of manual labeling makes automating segmentation one of 

the most fundamental problems in neuroimaging.  

Many methods have been proposed for fully automatic 

segmentation. However, the large number of artifacts in MR 

images makes automatic segmentation a very difficult task. 

For instance, the low contrast of boundaries between brain 

regions can easily cause segmentation methods like region 

growing and active contours to fail drastically.  

The maximum a posteriori (MAP) classifier is a 

probabilistic method for brain MR image segmentation that 

is used in three of the most prominent neuroimaging 

software packages (FSL [1], SPM [2], and FreeSurfer [3]). 

In MAP classifiers, if the prior probability is obtained based 

on the Markov random field (MRF) model, the method is 

referred to as MAP-MRF (used in FSL and FreeSurfer) [4]. 

It has the capacity to label a voxel based on its 1) intensity, 

2) location, and 3) the labels assigned to its neighbors. The 

MAP-MRF framework does not take into account the 

intensities of neighboring voxels, which is an important 

piece of information used by a neuroanatomist when doing 

manual labeling. 

Integrating the above four sources of information into 

the segmentation problem significantly increases its 

dimensionality/complexity. In order to make this high-

dimensional problem tractable, all of the standard 

neuroimaging software packages make substandard 

assumptions, in which some of those four sources of 

information are discarded. These assumptions reduce the 

segmentation accuracy. Our proposed MAP-QMRF 

framework is different because it takes into account all four 

sources of information for more accurate anatomical 

segmentation while overcoming the intractability problem. 

This was not possible until the introduction of the new 

causal Markov model, called Quadrilateral MRF (QMRF) 

[5]. In MAP-QMRF the prior and the likelihood probability 

are both computed by the new QMRF model. 

Markovianity is a common tool in dealing with the 

dimensionality problem. The idea behind Markovianity is 

that if there is a labeled image with a missing label at one 

voxel, the information about that voxel's label provided by 

the rest of the labels in the image is equal to the information 

given only by its neighboring labels.  Mathematically, for a 

family of random variables   {          } defined on a 

regular lattice   (e.g. digital image), each random variable 

   takes a value    from a set of discrete labels   
{         }, and  (     ) denotes the probability that a 

random variable at location  ,     takes the value    from the 

label set   which is abbreviated farther as  (  ). By 

extending this notation it is easy to say that  (         
          )   (          )   ( ) in which 

  {          } is a sample or configuration of the random 

field   corresponding to the realization of the field. Now, 

the MRF is defined according to two conditions:  ( )    

for any configuration of  , and  (  | {   })    (  |   
) 

where    
 is the configuration of the neighboring random 

variables at location    . 
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The labeled and intensity images are represented here by 

two random fields,   and    with different sets of discrete 

labels   {         } and   {       } respectively. 

Each label in   represents different brain structures whereas 

the labels in   represent the intensity values used in the 

image.  

Markov Gibbs equivalence gives a simple closed form 

function for the MRF distribution   ( )      

   (∑   ( )   ) where the clique potential function   ( ) is 

an arbitrary function which models the dependency between 

neighboring random variables. How to choose the form and 

parameters of the potential function for a proper encoding of 

constraints is a major topic in MRF modeling [4]. In FSL, 

the prior probability is modeled by a MRF with a clique 

potential function   ( )    (     ), called the Potts 

model [1]. FreeSurfer uses an arbitrary clique potential 

function   ( )       (  |   
) for this purpose [3]. It is 

almost impossible to find an optimal potential function 

which takes into account all the relationships between the 

voxels in the intensity and labeled images. Thus, despite the 

initial progress in the brain image segmentation in FSL and 

FreeSurfer, the recent evaluation studies [6,7] suggest 

considerable room for improvement.  

 

2. MAP-QMRF CLASSIFIER 

 

A neuroanatomist’s decision to assign a voxel to a specific 

anatomical region is based on two major factors: his/her 

existing knowledge of brain anatomy and the information in 

the image. The same approach is used in Bayesian 

classifiers where the first factor is considered the prior 

probability and the second is the likelihood.  

                                          (1) 

In the simplest case, the single-voxel-based Bayesian 

classifier can be formulated as: 

 (  |  )    (  |  )     (  )                    (2) 

where    represents the label being examined for the     

voxel in   and    represents the intensity at that voxel. Prior, 

 (  ), is the probability of different labels taking place at 

location   which can be obtained from a probabilistic atlas. 

Likelihood  (  |  ) can be either estimated for every 

location   or it can be simplified further by assuming the in-

class homogeneity and  (  |  )    ( | ) for every  . This 

means that if         for a given region (       ), 

then  (  |  )   (  |  )   ( | ). In this simple format, 

the decision for labeling a voxel is made only based on its 

location and its intensity value whereas the information in 

the neighboring voxels is discarded. Alternatively, one can 

consider that the probability of having a given anatomy at a 

given voxel varies depending on the intensities and 

anatomies found at the neighboring voxels. The MAP-

QMRF framework employs inhomogeneous anisotropic 

QMRF of order one to incorporate the neighboring voxels’ 

information (intensities and anatomies) into the process of 

classification. A Bayesian classifier can be formulated in its 

most general case as equation (3), which gives an intractable 

problem due to the high dimensionality of the fields   and 

 , 

 ( | )   ( | )     ( )                      (3) 

The traditional MAP-MRF framework uses the Markov-

Gibbs equivalency to incorporate the neighboring labels 

information into the computation of the prior  ( ) and 

computes the likelihood under the conditional independency 

assumption by  ( | )  ∏  (  |  )    in which  (  |  )'s 

are simplified further by in class homogeneity assumption 

stated in equation (2). However, a different paradigm has 

been taken into account in the proposed MAP-QMRF 

framework. Here, both joint distributions  ( ) and  ( | ) 

are obtained under the definition of new causal Markov 

model QMRF. This means that not only will the neighboring 

voxels labels be taken into account in the classification 

process, but their intensities will be considered as well. 

Their joint distributions will be formulated in terms of two-

dimensional neighboring distributions; therefore there will 

be no need for arbitrary potential functions or expectation 

maximization (EM) process to optimize it. The distribution 

of the first order homogeneous QMRF in terms of two 

dimensional local conditional distributions is given in [5].  

The joint distribution of the first order inhomogeneous 

anisotropic QMRF is given by equation (4). 

 ( )  ∏ ∏ ∏
[ (     )]

   

 (  )[ (  )]
   

[ (     )]
   

(     )   
         

   ( ) 

where    {  
    

    
    

 } is the set of 4 nearest neighbor 

pixels of   and   
   {(  

    
 ) (  

    
 ) (  

    
 ) (  

    
 )}, 

where   
  is the up,   

  is the down,   
  is the left, and   

  is the 

right neighbor of the random variable   . The derivation of 

equation (4) is similar to the one obtained for a 

homogeneous random field given in [5]; thus it is not 

repeated here. The likelihood probability  ( | ) is also 

formulated in terms of QMRF, which is given in equation 

(5). 

 

 
Fig. 1. The borders of the hippocampus, putamen, and 

caudate in the manually labeled (red), FreeSurfer (yellow) 

and MAP-QMRF (green) on a coronal slice. 
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 ( | )  ∏ ∏ ∏  

(     )   
 

 

        

 

[ ((     )|(     ))]
   

 (  |  )[ (  |  )]
   

[ ((     )|(     ))]
   

  ( ) 

where   is a realization of the random field   which is a 

sample of an intensity image. Equation (5) is simply derived 

from the extension of equation (4) to a vector random field 

in which each random variable is a vector if two random 

variables, [     ]. All the probabilities in the right side of the 

equations (4) and (5) are estimated by a normalized joint 

histogram for different neighboring cliques. Solving 

equation (3) in its most general case is intractable due to the 

infinite number of the possibilities in realization of   and  . 

Instead we employ an iterative local minimization method 

for finding the optimal solution and the simplest Bayesian 

classifier in equation (2) as the initializer. This initial 

segmentation is then sequentially updated at each location   
by obtaining the label   , which maximizes the following 

conditional posteriori probability  

 (  | {   }  )    ( | )     (  |   
)           (6) 

where the prior probability is computable from equations (4) 

and by  

 (  |   
)    

( )
∑  (  )    

⁄                   (7) 

where    is the same configuration as   in all locations 

except  . Please note only the terms containing    needs to be 

recomputed in each iteration for the computation of   ( | ), 

and  ( ). 

 

3. EXPERIMENTAL RESULTS 

 

In this section, we use MAP-QMRF to perform the 

volumetric segmentation of human brain MR images; then 

we evaluate the results by comparing them to the manually 

labeled brains and computing the Dice overlap measure for 

every region. We train and assess the MAP-QMRF classifier 

with the same dataset using the jackknife validation method 

(systematically recomposing the statistic estimate leaving 

out one observation at a time from the sample set). We also 

compare the final results with the results of the FreeSurfer 

on the same images. 

Training dataset is required in the proposed MAP-

QMRF framework to estimate the two-dimensional 

distributions in equations (4). The brain images are selected 

from the open access series of imaging studies (OASIS) 

database [8] and the labeling is done by the ongoing labeling 

project at Neuromorphometrics Inc. (http://www.Neuro 

morphometrics.com/) where experts are manually labeling 

structural scans using a protocol that precisely specifies the 

borders of 144 neuroanatomical regions of interest. The 

original labels are converted to 24 subcortical labels: white 

matter (WM), gray matter (GM), hippocampus (Hp), 

amygdala (Am), putamen (Pu), pallidum (Pa), caudate (Ca), 

thalamus (Th), cerebellum white matter (CWM), cerebellum 

gray matter (CGM), and lateral ventricle (LV), on both 

hemisphere  and also CSF, and brain stem (BS).   

Pre-processing is done here to prepare the labeled and 

intensity images to be processed by the classifier. Since the 

final results are going to be compared with FreeSurfer, we 

use the same method as FreeSurfer to do bias field 

correction and intensity standardization described in [9]. 

Spatial normalization of the MR brain images is done by 

linear registration (12 degree of freedom) of the images to 

MNI152 atlas space. 

Using the labeled and intensity images in standard space, 

MNI152, all the joint distribution in the right side of the 

equation (4) can be obtained at each voxel by their 

normalized histogram. Therefore, there is no need to deal 

with the Gibbs distribution, obtaining its clique potential 

functions and optimizing its parameters. We only have 

access to 20 labeled brain images at this time which is not 

enough to build the likelihood probability in the proposed 

MAP-QMRF framework. Therefore, only the prior of the 

classifier was modeled by QMRF and the likelihood was 

computed under the conditional independency assumption, 

equation (2). First the simplest method in equation (2) was 

employed to obtain the initializer. Then this initialization 

was fed into the iterative process in the proposed method to 

obtain the final result. From the training dataset, 19 images 

are used to build the prior based on QMRF with nearest 

neighborhood and one image is left out for testing the 

model. This process is repeated 20 times to get 20 labeled 

images. Fig. 3 shows the borders of the hippocampus, 

putamen, and caudate in the manually labeled (red), 

FreeSurfer labeled (yellow) and the output of the proposed 

method (green) on a sample coronal slice. The Dice overlap 

measures between the manually labeled image and the 

MAP-QMRF and FreeSurfer results are reported in Fig. 2 

for 13 different neuroanatomical structures. On average, 

MAP-QMRF shows 1.8% increase in the segmentation 

accuracy over Dice overlap measure. Next we perform a 

 
Fig. 2. Comparison of Dice overlap measure between MAP-

OMRF (red) and FreeSurfer (black) 

3205



power analysis to show the effect of such increase in the 

accuracy of the segmentation in its practical applications.  

 

4. POWER ANALYSIS 

 

Power analysis is done here to show that even a small 

increase in the Dice overlap measure is crucial for detecting 

the change in brain neuroanatomical structures, and 

reducing the number of required subjects. To show the 

relationship between the segmentation accuracy and the 

required number of subjects, we performed the following 

simulation: 1) An accurately and manually delineated 

hippocampus volume is extracted from a single brain and 

saved as a separate binary image, 2) 5% shrinkage is applied 

to this hippocampus region to obtain a smaller version. 3) 

By manipulating the border voxels (inner and outer), we 

create 500 different hippocampus volumes which overall 

look like the original one but the Dice overlap between them 

is 76%. 4) In the same way, we created 500 different 

hippocampus volumes from the smaller version. 5) Five 

subjects' volumes are randomly selected from both groups 

and student's t-test is performed (    ) to reject the null 

hypothesis (mean equality). 6) This is repeated     times 

and the ratio of the rejected times to accepted times of the 

null hypothesis is reported as the power for the five number 

of subjects. 7) The power curve is obtained by repeating this 

process for different number of subjects (from 5 to 200, with 

a step size of 5). 8) The entire process is repeated to obtain 

power curves for the overlap measures from 76% to 90% by 

2% step size and the results are shown in Fig. 4. As shown 

in this figure, the power for detecting 5% change is low for 

overlap measures less than 82%, even for a high number of 

subjects (>200). Also, for 100 subjects, a 4% increase in 

Dice overlap (from 76% to 80%) doubles the chance of 

detecting the 5% change. On the other hand, for 80% chance 

of detection, the required number of subject drops from 200 

to 150 with an increase of 2% in Dice overlap. These results 

clearly indicate that even a small improvement in the 

accuracy of the segmentation has a significant effect in its 

practical applications. 

 

5. CONCLUSION 

 

We have established a new MAP classifier using first order 

inhomogeneous anisotropic QMRF model. The new 

classifying framework was trained and assessed using 20 

manually labeled human brain MR images using the 

jackknife validation method. The same images have been 

labeled using the FreeSurfer software package and the 

accuracy of the both methods is reported in compare to 

manual labels by Dice overlap measure. It is shown that on 

average MAP-QMRF outperforms FreeSurfer by 1.8% on 

Dice overlap. We also used power analysis to show that this 

improvement in accuracy of the segmentation may reduce 

the number of required samples up to 50 subjects for 

detecting 5% change in the volume of a hippocampal region.   
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Fig. 3. Power analysis for detecting 5% reduction in the 

volume of hippocampus in human MR images 
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