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Abstract— Glaucoma subtype can be identified according to
the configuration of the anterior chamber angle(ACA). In this
paper, we present an ACA classification approach based on
histograms of oriented gradients at multiple scales. In digital
optical coherence tomography (OCT) photographs, our method
automatically localizes the ACA, and extracts histograms of
oriented gradients (HOG) features from this region to classify
the angle as an open angle (OA) or an angle-closure(AC).
This proposed method has three major features that differs
from existing methods. First, the ACA localization from OCT
images is fully automated and efficient for different ACA
configurations. Second, the ACA is directly classified as OA/AC
by using multiscale HOG visual features only, which is different
from previous ACA assessment approaches that on clinical
features. Third, it demonstrates that visual features with higher
dimensions outperform low dimensional clinical features in
terms of angle closure classification accuracy. Testing was per-
formed on a large clinical dataset, comprising of 2048 images.
The proposed method achieves a 0.835± 0.068 AUC value and
75.8% ± 6.4% balanced accuracy at a 85% specificity, which
outperforms existing ACA classification approaches based on
clinical features.

I. INTRODUCTION

Glaucoma is the second leading cause of blindness world-
wide (behind cataracts) as well as the foremost cause of
irreversible blindness [1], with a mean prevalence of 2.4%
for all age groups and 4.7% for ages 75 years and above.
It currently affects about 60 million people [2], and is
responsible for approximately 5.2 million cases of blindness
(15% of world total) according to the data from the World
Health Organization [1]. As illustrated in Fig. 1, glaucoma
is classified according to the configuration of the angle
(formed by the intersection of the cornea and iris) into open
angle (OA) and angle-closure (AC) glaucoma. Primary angle
closure glaucoma (PACG) is a major form of glaucoma in
Asia [3], compared to primary open angle glaucoma (POAG),
which is more common in Caucasians and Africans [4].
The high visual morbidity from PACG is related to the
destructive nature of the asymptomatic form of the disease.
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Fig. 1. Open angle (OA, left) and angle-closure (AC, right).

Early detection of anatomically narrow angles is important
and the subsequent prevention of visual loss from PACG
depends on an accurate classification of the ACA [5].

Angle closure is a result of obstruction of the trabecular
meshwork by the iris, impeding the drainage of aqueous
humour in the angle of the eye, causing an increase in
intraocular pressure (IOP). As reported in [6], a shallow
central anterior chamber depth (ACD), a thick and anterior
lens position and short axial length (AL) are anatomical risk
factors for angle closure. Amongst these, a shallow ACD is
regarded as a cardinal risk factor for PACG. However, only
a small proportion of subjects with shallow ACD ultimately
develop PACG according to a population study [7]. Thus
other ocular factors related to PACG development need to
be discovered.

In the literature, automated glaucoma subtype classifi-
cation has been studied on color RetCam images [8], in
which the biologically inspired features (BIF) are extracted
from the ACA regions for classification. For other image
modalities, several automatic ACA assessment methods have
been proposed. For example, an edge detection and line
fitting approach is proposed for ACA measurement [9]
in ultrasound biomicroscopy (UBM) images. Similarly, a
segmentation, edge detection and linear regression based
approach is proposed for ACA assessment in OCT images
[10].

In this work, we study ACA classification based on
histograms of oriented gradients (HOG) features to identify
glaucoma subtype in OCT images, which has the advantages
of being non-invasive and non-contact [11] compared to
UBM. An OCT image captures a cross-section of the eye
as a grayscale image, and several features can be extracted
for ACA measurement, such as anterior chamber open depth
(AOD) [9][10], trabeculariris angle (TIA) [12], trabecular-
iris space area (TISA) [12] and Schwalbe’s line bounded area
(SLBA) [13]. In clinical practice, these features are used for
ACA classification.
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Fig. 2. Illustration of the varying of ACA closed and open. The ACAs in
the top and bottom rows are clinically labeled as closed, the ACAs in middle
row are labeled as open; however, these ACAs are intermediate cases and
very hard to classify.

ACA detection in OCT images can be relatively straight-
forward since the images are generally clean and are approx-
imately aligned during image acquisition process. However,
ACA classification is a challenging task since there are
intermediate cases (see in Fig. 2) that are difficult to classify
as AC or OA using the same clinical features, even for human
experts. Based on image classification experience, using only
one or two dimensional clinical features is insufficient to
achieve good performance, since the eigen dimension of this
problem might be much higher, as observed clinically [7].

In this paper, we propose an image processing and learning
based framework for efficient ACA localization and classifi-
cation, which has the following main features: 1) the image
processing based ACA localization in OCT images is fully
automated and efficient for different ACA configurations;
2) it can directly classify ACA as OA/AC based on only
visual features, which is different from previous work for
ACA measurement that relies on clinical features; 3) it
demonstrates that visual features with higher dimensions
outperform low dimensional clinical features in terms of
angle closure classification accuracy. With the proposed
framework, other existing visual features and learning al-
gorithms can be introduced to elevate performance.

II. ACA LOCALIZATION AND CLASSIFICATION
FRAMEWORK

To classify an ACA as open or closed angles, our solution
is to follow the method of a human expert. As shown
in Fig. 3, for a given OCT image, we first localize the
ACA region by using image processing approaches, and then
extract certain visual features (e.g., HOG) in the region and
apply the SVM classifier to identify whether it is closed. In
previous work, the ACA regions are marked manually [12]
or are automatic determined by using edge detection [9].
Based on our observations, we extended the edge detection
approach by combining edge detection with weighting and
connected component labeling segmentation (CCLS) [10],
which is robust to different ACA configurations and can
localize the ACAs with their vertices roughly aligned. To
classify an ACA as AC or OA, the simple thresholding
method is clinically used with several clinical features (e.g.,
depth, angle and area) for ACA measurement. However, we
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Fig. 3. Flowchart of the proposed ACA localization and classification.

believe that the context around the ACA region can provide
additional information to increase classification accuracy,
since the eigen dimension of this problem might be much
higher. Thus we introduce HOG features at multiple scales
with higher dimension and SVM classifier for ACA classifi-
cation.

A. ACA localization

A coarse-to-fine scheme is used to efficiently localize the
ACA from input OCT image. As shown in Fig. 3, first, a
400 × 400 region of interest (ROI) covering the exact ACA
is cropped out at a fixed position from the 834 × 900 input
image; second, the ROI is quantized to a binary image (0
for black and 1 for white) using a small valued threshold in
order to preserve more details of the angle (a large/adaptive
threshold will lose more details at the extreme end of the
ACA, which is very important for classification); third, a
morphological operation is performed to remove isolated
noise points; fourth, weighting and CCLS algorithm are
used to segment the ACA candidate in the ROI; fifth, a
post processing step is applied to remove other components
connected to the exact ACA in the candidate region; lastly,
the ACA is localized with an n× n bounding box centered
at its detected vertex.

1) ROI detection: For ROI detection, many existing com-
puter vision methods can be used, such as the well-known
sliding window method [14][15]. However, for the relatively
clean OCT images, line fitting based cornea detection is
accurate and much more efficient to obtain the ROI, since the
ACA is between the cornea and iris (see in Fig. 1). As shown
in Fig. 4, Sobel edge detection is first applied on the OCT
image, and then the top-most white point of each column is
obtained, thus the fitted smooth line of these points is treated
as the upper boundary of the cornea. The lowest point of the
boundary is selected as the reference point (i.e., the center
point of the left boundary of the ROI), and then a 400×400
rectangle referred to this point is cropped as the ROI.

2) ACA segmentation: The ROI is first converted to binary
image (0 for black and 1 for white) using a small valued

3168



Fig. 4. Illustration of ROI detection. The green line is the detected cornea
upper boundary and the red bounding box is the ROI.
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Fig. 5. Clear ACA (left), bottom connected ACA (middle) and an
illustration of post processing (right) for the bottom connected case.

Reference line

Fig. 6. Two ACA profiles: single clear angle (first) and multiple angles
(second), and illustration of ACA vertex localization (third and fourth) for
an ACA region.

threshold, and the pixels above the cornea upper boundary
is set to black to avoid further processing. Thus each 4-
connected white region can be separated and labeled by
using CCLS algorithm [10], and the candidate ACA region
is selected by choosing the one with maximum pixel number.
With the candidate ACA region obtained, a post processing
step illustrated in Fig. 5 is applied to deal with the case that
the bottom part of the ACA is connected with other white
regions. This occurs when the iris is not fully captured during
the imaging process, resulting in that at least one row is
completely white in the bottom half of the right-most rows.
First, the top-most white point of each column is located;
second, the difference between each pair of neighboring
columns is computed; third, the first column from the left
that has a difference greater than 30 (pixels) is found and
then the reference point of the ACA segmentation can be
obtained; lastly, for the region from the reference point to the
right-bottom, a zero value (black) is given to all the pixels
below the reference row which has the minimum number of
white pixels.

3) ACA vertex localization: As shown in Fig. 6, by this
step, the obtained ACA regions can be categorized into two
profiles according to our observations, i.e., the clear case
(when the ACA vertex is the left-bottom-most white point)

and the multiple angles case. To localize the true vertex of
the ACA in both cases, the image is first rotated 45 degree
clockwise with respect to the bottom-left point, and then the
left-most white point is located (if there are multiple such
points, choose the bottom-most one) and its original position
on the non-rotated image can be calculated. After the vertex
is localized, a n×n (n is set to 150 in the experiments) region
centered at the vertex is cropped from the original image,
as the ACA localization result to extract visual features for
classification.

B. ACA feature representation and classification

1) HOG feature extraction: In this work, HOG features
[14] is used for ACA representation, because HOG features
have demonstrated great success in various object detection
and recognition problems. Moreover, HOG features are re-
lated to the edge information, which is important for ACA
assessment; and we did not use BIF features [8] which are
related to textures, computational expensive and are more
suitable for color images. At this stage, each ACA region
is represented by a n× n grayscale image. To extract HOG
features, the gradient of each pixel in the region is computed,
and then the gradient magnitude is inserted into one of nine
histogram bins that span a 180 degree range. The ACA region
is divided into d×d cells, and 2×2 cells form a block. Each
block half overlaps each of its neighbors, and is normalized
using the L2-norm. With a specific d, the HOG vector is
composed of all normalized block histograms. Multiscale
strategy is introduced to boost up the performance, i.e.,
different values of d are used to extract HOG features at
different scales, and the final feature is composed of all HOG
vectors extracted at every scale. For more details of the HOG
features, the readers are referred to [14].

2) Linear SVM classification: For efficiency, a simple
linear SVM classifier is employed, with a weight vector ω
trained to estimate the class label y (+1 for AC and -1 for
OA) of a given feature vector f , according to y = ωT f . In
the experiments, we use the LIBLINEAR toolbox [16] to
train the SVM models.

III. EXPERIMENTS

In this section, we describe the evaluation criteria and
experimental setting, then analyze the classification accuracy
in our framework, through comparisons of using visual
features and clinical features.

A. Experimental setup

Our approach is implemented with Matlab and tested on a
four-core 3.4GHz PC with 12GB RAM. A dataset comprised
of 2048 images is used for the experiments, which is much
larger than the datasets used in the literature [9][13]. The
images are from 8 circular scan videos of 8 patient eyes with
glaucoma, 4 of them with PACG and other 4 with POAG.
Each video contains 128 frames, and each frame is split into
2 images since it contains two angles and the right angle
image is flipped horizontally. The evaluation is based on
each single image, which is labeled as AC or OA by three
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TABLE I
PERFORMANCE COMPARISONS OF ACA CLASSIFICATION WITH

DIFFERENT FEATURES AND PARAMETERS

Feature HOG AOD SLBA
d 3 6 10 {3,6,10} – –

AUC
0.807
±0.073

0.818
±0.088

0.796
±0.094

0.835
±0.068

0.745
±0.166

0.697
±0.108

P̄ (%)
66.8
±10.0

72.3
±10.0

67.8
±7.8

75.8
±6.4

63.9
±11.7

62.1
±7.5

ophthalmologists from Singapore Eye Research Institute. All
ACA localization results are manually checked and all ACA
regions are correctly cropped out. For the ACA classification
evaluation, we follow the widely used leave-one-out (LOO)
approach, i.e., for each testing round, 512 images from one
PACG and one POAG patients are used for testing while
others are used for training, thus 16 rounds are performed to
test all cases. We assess the performance using a balanced
accuracy with a fixed 85% specificity and area under ROC
curve (AUC) which evaluates the overall performance. The
balanced accuracy (P̄ ), sensitivity (P+) and specificity (P−)
are defined as

P̄ =
P+ + P−

2
, P+ =

TP

TP + FN
, P− =

TN

TN + FP
,

(1)
where TP and TN denote the number of true positives and
negatives, respectively, and FP and FN denote the number
of false positives and negatives, respectively.

B. Comparison of ACA classification

In this section, we compare classification methods using
HOG features [14] with different cell numbers (d = 3, 6, 10)
and two clinical features (i.e., AOD [10] and SLBA [13]).
From the results shown in Table I, we have the following
observations:

1) The HOG feature based methods outperform the clin-
ical feature based ones, which demonstrate high di-
mensional visual features provide more information for
classification and thus lead to higher performance. In
addition, the performance drops significantly in some
videos because the video contains a lot of intermediate
cases which are difficult to classify even for human
experts.

2) Among methods based on the HOG features with
different parameter d, the highest accuracy (i.e., largest
AUC and P̄ ) is obtained when setting d = 6, for which
the cell size is not too small to lose useful information
nor too big to introduce more noises.

3) Comparing HOG feature based methods with and with-
out a multiscale scheme, it shows that the multiscale
scheme leads to a higher accuracy, as expected.

In terms of processing speed, each ACA costs about
0.09s for feature extraction and classification with a Matlab
implementation, which can be further accelerated with a C++
implementation.

IV. CONCLUSION

To identify glaucoma subtype, an image processing and
learning based framework was proposed to localize and clas-
sify ACA, based on multiscale HOG features. Our method
was tested on a clinical dataset comprised of 2048 images
with two evaluation criteria. The results indicate that it
outperforms clinical feature based methods. In future work,
we plan to extend the classification framework to multiple
level angle closure grading, in order to elevate precision and
better deal with intermediate cases.
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