
Robust artefact detection in long-term ECG recordings based on

autocorrelation function similarity and percentile analysis*

Carolina Varon, Member, IEEE, Dries Testelmans, Bertien Buyse,

Johan A.K. Suykens Senior Member, IEEE, and Sabine Van Huffel, Fellow, IEEE

Abstract— Artefacts can pose a big problem in the analysis of
electrocardiogram (ECG) signals. Even though methods exist
to reduce the influence of these contaminants, they are not
always robust. In this work a new algorithm based on easy-to-
implement tools such as autocorrelation functions, graph theory
and percentile analysis is proposed. This new methodology
successfully detects corrupted segments in the signal, and it
can be applied to real-life problems such as for example to
sleep apnea classification.

I. INTRODUCTION

The diagnostic capabilities of the electrocardiogram

(ECG) can be reduced by the presence of artefacts in the sig-

nal. These contaminants can be caused by electrode motion,

contact noise and electromyography among others [1]. Due

to these undesired features, the output of different algorithms

can be corrupted. For example when classifying segments of

the signal, or deriving respiration from the ECG, an artefact

can be interpreted as an anomaly. Therefore, in order to

obtain accurate conclusions from any ECG analysis, it is

very important to filter and eliminate any type of erroneous

sections [2].

In principle this can easily be done when short signals

are analysed, because the length of the measurements allows

for manual inspection of the noise. However, in practice,

long-term recordings of several patients are studied at the

same time, which requires automated algorithms to detect

and remove artefacts.

Different methodologies have been proposed to enhance

the quality of the ECG, e.g. [3], [4] [5]. A disadvantage of

those methods is that they do not provide information on the

location of the corrupted sections. Therefore, even though
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the quality of the signal is enhanced, some artefacts are still

present, and can have a negative influence on the analysis.

An approach to find the specific location of disturbances is

presented in [6], where the signal is evaluated with a moving

window. One shortcoming of this method is the use of rules

to identify contaminants. Furthermore, the method assumes

that no abrupt alterations occur.

This paper addresses these problems, and proposes a

new algorithm to identify the location of artefacts in long-

term ECG recordings. The suggested methodology starts

with characterizing each ECG segment by its autocorrelation

function (ACF), and then uses graph theory [7] to identify the

noise and contaminants. This is due to the fact that the ACF

of a quasi periodic signal is significantly different from the

one of a contaminated time series. The ACF has been used

to analyse the properties of the ECG signal [8],[9], [10], and

[11], but never to locate artefacts.

The rest of this document is organized as follows. Section

II describes the data and elaborates more on the proposed al-

gorithm. Results and discussion on the findings are presented

in Section III, and section IV contains the conclusions of this

work.

II. METHODOLOGY

A. Data

The dataset used in this study consists of 16 single lead

ECG recordings extracted from polysomnographic measures

of 16 different patients of the sleep laboratory at the Uni-

versity Hospital Leuven (UZ Leuven), Belgium. The signals

were sampled at 200Hz and the recording time ranged

from 4 up to 11 hours. In total 152 hours and 12 minutes

were extracted. Each recording was manually annotated

by a medical doctor who has experience with interpreting

polysomnographic signals, including ECG. The annotations

correspond to the occurrence of different types of sleep apnea

events. This information is used in Section III to verify the

algorithm when applied to the problem of detecting sleep

apnea.

B. Segmentation and characterization of the ECG

The algorithm proposed in this paper was originally in-

spired by sleep apnea classification, where each signal is

segmented and analysed on a minute-by-minute basis [12],

[13],[14]. With this in mind, each ECG recording is first

divided into segments of length N . Then, the signal is

filtered by means of a band pass Butterworth filter with cut-

off frequencies of 1Hz and 40Hz. The frequency bands are
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selected based on the low- and high-frequency limits of a

diagnostic ECG [1], and on the fact that variations due to

baseline drifts should not be considered.

After this preprocessing, the ACF of each ECG segment

is obtained by computing the inverse Fourier transform of its

corresponding power spectral density [15].

Note that the Fourier transform of a non-stationary signal

is used, which normally should be avoided because of

low frequency resolution. In other words, Fourier transform

should not be used to study e.g. beat abnormalities or rhythm

changes [1]. However, the goal of this research is to detect

artefacts of the signal, rather than deviations from healthy

ECGs. Therefore, in this particular application, the resolution

of the Fourier transform is sufficient. This can be observed

in Fig. 1, where the power spectra of two ECG segments are

compared. The figure shows that a contaminated segment

presents a broader spectrum when compared with a clean

one. This behaviour is expected as the artefact should behave

more like a random sequence with a broader frequency

content. A similar assumption is made in [16], where mo-

tion artefacts are removed from photoplethysmographic data,

using time and frequency analysis.

C. Weights Computation

After calculating the ACFs, the contaminated segments

need to be localized. As mentioned in the introduction, when

an ECG is interrupted by an artefact, a clear change in

its autocorrelation is observed. This means that the ACFs

that contain disturbances are “dissimilar” from the noise-

free segments. To find these differences, a link to graph

theory [7] is made, where the set of ACFs is represented

on a mathematical structure known as a graph. Such a

graph consists of vertices, i.e., the ACFs, that are pairwise

connected by edges, i.e., their similarity. The length of these

edges is determined by the inverse of a pairwise similarity

between the ACFs, namely the cosine similarity which is

quantified by

cosθ =
AT

1
A2

‖ A1 ‖‖ A2 ‖
, (1)

where A1 and A2 are two vertices, θ is the angle between

them, ‖ . ‖ defines the two-norm and AT
1
A2 the dot product

between the vectors. In this way, segments that are signif-

icantly different, i.e., artefacts, are represented by isolated

vertices. Each of these vertices is then characterized by

a lower degree value, which is computed by adding the

pairwise similarities between that specific vertex, and the

rest of the graph. When ECG segments are clean, their

ACFs are similar, and the corresponding vertices get high

degree values, i.e. they are strongly connected in the graph.

This can be seen in Fig. 2, where two clean (left) and two

contaminated minutes (right) are plotted together with their

ACFs and their degree values.

This study proposes to use these degrees as “weights”

to indicate how clean an ECG section is. In addition, the

algorithm only retains the 95th percent of the most similar

segments, which correspond to the vertices with the higher

weights. In percentile analysis, the 95 percentile is an often
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Fig. 1. ECG segments (left) and their corresponding power spectra (right).
Note that the frequency content of an artefact is broader (bottom) compared
to the one of a clean signal (top).

used value to detect outliers. The proposed algorithm is

summarized in Table I.

In the next section, the performance of the proposed algo-

rithm is compared with two clustering methods, namely k-

means [17] using the Euclidean distance, and kernel spectral

clustering (KSC) [18] using a radial basis function.

III. RESULTS AND DISCUSSION

This section is divided in two parts, first the ability of

the proposed method to identify artefacts in the signals is

studied. Second, the algorithm is applied to a typical practical

problem, namely a sleep apnea classifier.

A. Detection of artefacts

The total number of minutes in the dataset is 9132 and

only 294 of them contain artefacts, which were manually

labelled. This labelling allows to validate the method, and

compare the performance with that of k-means and KSC for

two cluster.

As mentioned in Table I, the ACF for each minute is

computed. After that, the weights are calculated and the 95

percentile threshold is applied. This gives two groups: the

normal segments and the contaminated ones. Fig. 3 shows

the weights of the sections of one ECG signal, and the 95th

TABLE I

ARTEFACT DETECTION ALGORITHM

Input: ECG signal and length N . In this study we use N = 60s.
Output: Weight for each ECG segment and 95th percentile of the

weights.
1: Segment the ECG into epochs of length N .
2: Compute the ACF of each segment using the inverse Fourier

transform of its corresponding PSD.
3: Calculate the cosine similarity (1) between each pair of ACFs.

This results in the similarity matrix between all ACFs.
4: Compute the degree values by summing all the columns of the

similarity matrix. These degrees correspond to the weights.
5: Calculate the 95th percentile of the weights.
6: Label the segments with weights outside the 95th percentile, as

contaminated.
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Fig. 2. Autocorrelation functions (bottom) of four different ECG segments of one minute (top). The first two (from left to right) correspond to normal
minutes, while the other two to minutes with artefacts. The normalized degree values d, for the ACFs or vertices, are indicated. Note that the similarity
between the contaminated segments and the rest is significantly low compared to the ones of normal minutes.
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Fig. 3. Weights of one minute ECG segments of one patient. The dashed
line indicates the 95th percentile. Note that the points below the threshold
are clearly separated from the rest.

percentile. Note that the minutes with the lowest weights

are clearly separated from the rest. Finally, the other two

partition algorithms are also applied to the same set of ACFs.

Due to inter-subject variabilities in the ECG and ACF,

the algorithms are applied to each ECG signal separately.

To compare the performance of the algorithms, statistical

measures often used in classification known as sensitivity,

specificity, and accuracy are computed. These values are

obtained for each algorithm and for each patient separately,

and they are shown in Table II. It is observed that the pro-

posed algorithm (95th) outperforms the other two, because

accuracy, specificity and sensitivity are higher for all patients.

For completeness, all the one-minute segments are put

together and the algorithms are applied to all the signals

at the same time. The best results are again produced by the

95th percentile threshold and correspond to a sensitivity of

93.2% and specificity of 90.4%.

To determine if the duration of the segments affects

the results, the experiments are repeated with N ranging

from 5 to 60 seconds. The best results are obtained after

analysing segments of 5 seconds, the lower bound of the

epochs. This is no surprise, since as shorter segments are

analysed, less information from normal ECG is included in

the contaminated signals. In other words, when the selected

epochs contain, proportionally to the window length, more

artefact than normal ECG, its ACF differs more from that of

a normal signal. Fig. 4 shows a one minute ECG segmented

into epochs of 5 seconds, i.e., 1000 samples. These results

indicate that when the window is reduced the resolution of

the algorithm is improved. The ACFs of the epochs are also

indicated in the figure, where it is possible to observe the

differences between corrupted and clean signals.

There are reasons why the clustering algorithms do not

perform as good as the 95th percentile threshold. On one

hand, it is important to keep in mind that the problem deals

with a highly unbalanced partition, since in most of the cases,

the artefacts constitute a lower percentage of the signal. In

other words, the number of segments in the “normal” group

must be significantly higher than the amount of segments

in the “contaminated” group. KSC uses a model selection

criterion that takes into account these unbalanced problems

[18]. However, special attention must be paid to the definition

of the parameter that determines how balanced the clusters

must be. A bad selection of this parameter can produce

misleading results.

On the other hand, the k-means clustering finds globular

structures in the data. When such structures are not present

or are not clearly separable, this technique tends to perform

poorly. In addition, this algorithm tends to converge to local

minima, which is one of the well known disadvantages of

k-means.

B. Sleep apnea classification

The algorithm is now used in a real-life problem. In [19], a

method to classify sleep apnea is proposed and it makes use

TABLE II

COMPARISON OF THE PERFORMANCE OF THE PROPOSED ALGORITHM

WITH k-MEANS AND KSC. MEAN VALUES AND STANDARD DEVIATIONS

ARE INDICATED.

KSC k-means 95th

Sensitivity 0.92 ± 0.11 0.89 ± 0.13 0.96 ± 0.05

Specificity 0.75 ± 0.15 0.82 ± 0.13 0.90 ± 0.03

Accuracy 0.75 ± 0.14 0.82 ± 0.13 0.90 ± 0.03
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Fig. 4. One minute ECG segmented into epochs of 5 seconds (top).
Note that segments S6, S7, S8, S9 and S12 are contaminated. Segments
S1 (middle left) and S6 (middle right) are indicated. Note that the ACFs
(bottom) are significantly different between S1 (tick solid line) and S6
(dashed line). The other curves (bottom) correspond to the ACFs of the
other segments.

of a training and a validation set. However when artefacts

are present in the ECG, these sets are influenced and the

overall performance of the classifier is affected. This can be

avoided by first applying the proposed methodology and then

presenting only the clean ECG minutes to the classification

algorithm.

The performances of the sleep apnea classifier on a

validation set is evaluated before and after detecting the

minutes with artefacts. The sensitivity and specificity of the

classifier before applying the algorithm are 85.9% and 86.7%

respectively. After removing the contaminated segments

from the training and validation sets, the sensitivity and

specificity are then 93.2% and 92.1% respectively. Hereby

the ground truth provided by the clinician is used. Again,

it is observed that the performance is improved when the

training set is selected from the minutes with degrees within

the 95th percentile.

IV. CONCLUSION

A new algorithm to detect artefacts by means of the au-

tocorrelation function, in the ECG was presented. Moreover,

a weighting methodology to distinguish normal from con-

taminated ECG signals is included, which outperforms other

methods such as k-means and kernel spectral clustering.

The most important contribution of this study is that it is

easy to implement and interpret. This is due to the fact that

it uses well-known tools such as the autocorrelation function

and percentile analysis. Furthermore, the algorithm does not

require computationally expensive operations, e.g. eigenvalue

decompositions.

Another advantage of the algorithm is that it allows to

locate the contaminated segments in the ECG. This informa-

tion is not provided by algorithms that enhance the overall

quality of the signal. In addition, other artefact detection

algorithms require more ECG channels or extra information,

to identify and remove artefacts. This is not the case for the

methodology presented in this paper, since it only requires

a long term ECG signal.

A disadvantage of this method is that it can only be applied

off-line. It is necessary to have the complete ECG recording

before the artefacts can be detected.
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