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Abstract— Cough is the most common symptom of several 

respiratory diseases. It is a defense mechanism of the body to 

clear the respiratory tract from foreign materials inhaled 

accidentally or produced internally by infections. The 

identification of wet and dry cough is an important clinical 

finding, aiding in the differential diagnosis. Wet coughs are 

more likely to be associated with bacterial infections. At 

present, the wet/dry decision is based on the subjective 

judgment of a physician, during a typical consultation session. 

It is not available for long term monitoring or in the assessment 

of treatment efficacy. In this paper we address these issues and 

develop fully automated technology to classify cough into ‘Wet’ 

and ‘Dry’ categories. We propose novel features and a Logistic 

regression-based model for the classification of coughs into 

wet/dry classes. The performance of the method was evaluated 

on a clinical database of pediatric and adult coughs recorded 

using a bed-side non-contact microphone.  The sensitivity and 

specificity of the classification were obtained as 79% and 

72.78.7% respectively. These indicate the potential of the 

method as a useful clinical tool for cough monitoring, especially 

at home settings. 

I. INTRODUCTION 

ough is a natural protective mechanism that helps 

clearing the secretions from the respiratory tract and 

prevents entering of noxious particles into the 

respiratory system. It is generally defined as the sudden 

expulsion of air accompanied with a typical sound [1]. The 

prevalence of cough in communities in Europe and USA 

varies between 9 – 33%[2]. The situation is far worse in the 

developing world.  

Cough can be classified into the two categories ‘Wet 

Cough’ and ‘Dry Cough’ depending on their acoustic 

quality. Cough is characterized as wet when the sounds carry 

features indicative of mucus; in the absence of perceivable 

wetness they are called dry. This is essentially a subjective 

process.  

Medically there are different reasons for the wet and dry 

cough and their identification aids in the differential 

diagnosis of diseases such as pneumonia and bronchiolitis. 

Often, the dry-wet classification is used in epidemiological 

studies [3, 4] and clinical research [5, 6]. In children wet 

cough is generally associated with the lower respiratory tract 

infections [6]. Diseases such as bronchiolitis, allergies, 

sinusitis can cause dry cough.  

Cough is often present as an earliest symptom in almost 

all of the respiratory diseases. It can be a useful in 
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developing screening tools for some respiratory diseases. 

Even though cough is common in respiratory diseases and 

considered an importance clinical symptom, there is no 

objective gold standard to assess it. Manual assessment of 

dry and wetness of the cough sounds is the reference method 

used by clinicians around the globe [5]. 

Researchers have rarely attempted to develop technology 

for the automated, objective classification of cough into dry-

wet categories. To the best of our knowledge, only two prior 

works exist in this area [7, 8]. Murata et al [7] analyzed 

cough sound frequencies to discriminate between wet and 

dry cough. Chatrzarrin et al [8] proposed peaks of the energy 

envelop and spectral features of the cough sounds to 

differentiate between wet and dry cough.  

These studies opened up a new branch of research in 

respiratory sound analysis. However they have been limited 

to a descriptive study of some characteristic features of 

coughs. No definitive classification algorithm or results were 

presented for wet/dry differentiation. The amount of data 

analyzed was limited (30 cough samples from 10 subjects in 

[7] and total of 16 coughs in [8]) making the interpretation 

of the results difficult. All the existing work used cough 

sounds from adult subjects. In addition to these, 

characterizations of the cough sounds were based on 

duration, magnitude and frequency features.  

Production of cough sound is a complex physiological 

process involving several anatomical structures in the lower 

and upper respiratory system. Its characteristic features vary 

significantly with the individual differences and depends 

heavily on respiratory conditions [1]. Intensity and duration 

dependent methods will not be sufficient to capture the rich 

information hidden in cough sounds. 

In this paper we propose an automated classification 

model to categorize cough sounds into wet and dry groups. 

Method uses 1
st
, 2

nd
 and 3

rd
 order statistical features (eg. 

formant frequencies, mel-cepstrum, non-Gaussianity, and 

bispectrum etc.) of the cough sounds. Model is trained and 

tested on a comprehensive database of 178 coughs from 46 

subjects (23 male, 23 female) with age range of 1 month to 

15 years. The subjects have a range of respiratory illnesses 

such as asthma, pneumonia, bronchitis and rhinopharyngitis. 

II. METHOD 

A. Recording environment 

The clinical data acquisition environment for this work is 

Respiratory Medicine Unit of the Sardjito Hospital, Gadjah 

Mada University, Indonesia. Table 1 lists the inclusion and 

exclusion criteria. All patients fulfilling the inclusion criteria 

were approached. An informed consent was made using 

form approved by the human ethics committes of Gadjah 

Mada University and The University of Queensland. Patients 
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were recruited within first 12 hours of their admission. After 

the initial medical assessment sound recordings were made 

for next 4-6 hours in the natural environment of the 

respiratory ward. 

The cough sounds were acquired with a high fidelity, 

computerized data acquisition system. A matched pair of 

low-noise microphones having a hypercardiod beam pattern 

(Model NT3, RODE, Sydney, Australia) were used to 

capture the sound signals. The nominal distance from the 

microphone to the mouth of the patient was 50 cm, but could 

vary from 40 cm to 70 cm due to patient movements. A 

professional quality pre-amplifier and A/D converter unit 

(Model Mobile-Pre USB, M-Audio, California, USA) was 

used for sound signal acquisition. We used a sampling rate 

of 44.1k samples with a 16 bit resolution (CD-quality 

recording). The system had a 3 dB bandwidth of 20800 Hz 

at the sampling rate used. 

B. Formation of feature vector and Wet/Dry cough 

classification model 

There is no widely accepted method for automatic 

identification of cough events. Manual identification of 

cough events from long sound recording is still considered 

as the best method. In this paper we followed this standard. 

After the manual scoring we followed the following steps to 

compute mathematical features from the cough event data. 

 

[1]. Let x[k] denotes the k
th

 sample of the discrete time 

sound signal.  Filter x[k] using a digital high pass filter 

to get y[k].  

[2]. Divide y[k] into ‘n’ equal size non-overlapping sub-

segments. Let y
i
[k] represents the i

th
 sub-segment of 

y[k], where i = 1,2,3,….,n.  

[3]. Compute the following features (see Section C for 

details) for each of the ‘n’ sub-segments in y[k]: 

Bispectrum Score (BGS), Non-gaussianity score 

(NGS), formant frequencies (FF), log energy (LogE), 

zero crossing (ZCR), kurtosis (Kurt), and mel-

frequency cepstral coefficients (MFCC).  

[4]. For each y[k] form a feature vector Fk containing N 

elements where N consists of: 

(12  n from MFCC) +(4  n from Formant frequency) 

+(5  n from NGS, LogE, Zcr, Kurt and Bispectrum). 

By setting n=3 we get an Fk with N=63 features for each 

cough event. 

[5]. For Wet and Dry cough classification we used Logistic 

Regression (LR) statistical model. It is a generalized 

linear model, which uses independent several predictors 

to estimate the probability of a categorical event 

(dependent variable). In this work, the dependent 

variable Y is assumed to be equal to “one” (Y=1) for 

Wet Cough and “zero” (Y=0) for Dry Cough. A model 

is derived using LR function to estimate the probability 

Y=1 (i.e cough event belong to category of ‘Wet 

Cough’) given the independent variables (i.e feature set) 

as follows: 
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                     ( ) 
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Features were then selected to include only the best 

independent variables (variables with low ‘p’ value) that 

facilitate the classification, in the final model. The final 

model is then used to estimate the probability and each 

cough event is classified as belonging to either of the 

two categories using a probability threshold. 

C. Feature computation 

(i) Bispectrum Score (BGS) – The 3
rd

 order spectrum of the 

signal is known as the bispectrum. Unlike the power 

spectrum (2
nd

 order statistics) based on the autocorrelation, 

bispectrum preserves Fourier phase information. The 

bispectrum can be estimated via estimating the 3
rd

 order 

cumulant and then taking a 2D-Fourier transform. The 3
rd

 

order cumulant C(1,2) was estimated using (3) as defined 

in [9]. By applying a bispectrum window function 

(minimum bispectrum-bias supremum window described in 

[10]) to the cumulant estimate, windowed cumulant function 

C
i
w(1,2)was obtained.  

  (     )   
 

 
∑  
   

   

( )  (    ) 
 (    )          

                                                       ( ) 
In (3) Q is the length of the 3

rd
 order correlation lags 

considered. The bispectrum B
i
(ω1,ω2) of the segment y

i
[k] 

was estimated using (4). We used FFT length of 512 points.  
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In the frequency domain, a quantity P
i
() can be defined 

for the data segment y
i
[k] such that 

  (     )    (      )                                                  ( ) 

describing a one-dimensional slice inclined to the -axis at 

an angle tan
-1 and shifted from the origin along the -axis 

by the amount -<<)[9]. For this work we set 

andso that the slice of the bispectrum considered is 

inclined to the -axis by 45
o
 and passes through the origin. 

Then Bispectrum Score (BSG) is computed using (6). In (6) 

we used 1 = 90hz, 2 = 5khz, 3 = 6khz and 4 = 10.5khz. 

                                   
∫  ( )
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(ii) Non-Gaussianity Score (NGS) – NGS gives the measure 

of non-gaussianity of a given segment of data. The normal 

TABLE I 

INCLUSION AND EXCLUSION CRITERIA USED IN THE STUDY 

Inclusion Criteria 

 

- Patients with symptoms of 

chest infection : At least 2 
of 

- Cough 

- Sputum   
- Increased breathlessness 

- Temperature >37.5° 

- Consent                                     

Exclusion Criteria 

 

- Advanced disease where 
recovery is not 

expected eg terminal 

lung cancer 
- Droplet precautions 

- NIV required 

- No Consent 
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probability plot can be utilized to obtain a visual measure of 

the gaussianity of a set of data. The NGS of the data segment 

y
i
[k] can be calculated using (7). Note that in (7), p and q 

represents the normal probability plot of the reference 

normal data and the analyzed data, respectively, with j 

ranging from the values 1 to N.  

                    (
∑ ( [ ]   )  
   

∑ ( [ ]    ̅)  
   

)                    ( ) 

(iii) Formants frequencies – In human voice analysis 

formants are referred as the resonance of the human vocal 

tract. In cough analysis, it is reasonable to expect that the 

resonances of the overall airway that contribute to the 

generation of a cough sound will be represented in the 

formant structure; mucus can change acoustic properties of 

airways. We included the 1
st
 four formant frequencies (F1, 

F2, F3, F4) in our feature set. Past studies in the speech and 

acoustic analysis have shown that F1-F4 corresponds to 

various acoustic features of airway[11]. We computed the 

F1-F4 by peak picking the Linear Predictive Coding (LPC) 

spectrum of cough sounds. For this work we used 14
th

 order 

LPC model with the parameters determined via the 

Levinson-Durbin recursive procedure [12]. 

(iv) Log Energy(LogE) – The log energy for every sub-

segment was computed using eq. 8 

            (   
 

 
∑(  ( ) )

 

   

)            ( ) 

where in (%) is and arbitrarily small positive constant 

added to prevent any inadvertent computation of the 

logarithm of 0. 

(v) Zero crossing (Zcr) – The number of zero crossings were 

counted for each 'n' segments. 

(vi) Kurtosis (Kurt)– The kurtosis is a measure of the 

peakedness associated with a probability distribution of 

segment y
i
[k], computed using (9). µ and  is the mean and 

stand deviation of the segment y
i
[k] respectively.  

                 
 (  [ ]   ) 

  
                             ( ) 

(vii) Mel-frequency cepstral coefficients (MFCC) – MFCCs 

are commonly used in the speech analysis systems [13]. 

They represent the short term power spectrum of an acoustic 

signal based on a cosine transform of a log power spectrum 

on a non-linear mel-scale of frequency. We included the 12 

MFCC coefficients in our feature set. 

III. RESULTS 

A. Training and testing datasets 

 Total of 178 cough events from 46 subjects were used in 

this study. The male to female ratio of the 46 subjects was 

1:1. The mean age of the subjects was 3 years and 3 month. 

The age range of the subjects varied from 1 month to 15 

years and having diseases such as asthma, pneumonia, 

bronchitis, rhinopharyngitis etc. 

The fourth author of the paper, a pediatrician with more 

than 20 years of experience in pediatric respiratory diseases, 

manually classified 178 cough events into Wet and Dry. The 

pediatrician was blinded to the actual diagnosis of the 

subjects. This manual classification was considered as the 

‘reference standard’ against which results of automatic 

classification by designed LR model were compared. 

Out of 178 cough events 82 were classified as Wet and 

96 as Dry. We randomly partitioned the data set into non-

overlapping training and testing sets. We used 70% (124 

cough events) of the cough events for training and 30% (54 

cough events) for testing the model. The model was trained 

on the training set of each partition and was tested on the 

particular testing set. Each partition thus gave us a 

performance indication of our method. To validate the 

model, we generated 200 such randomized partitions and 

evaluated the average performance over them.  

B. Classification results 

The mean sensitivity and specificity for Wet/Dry 

classification using LR-model was 74.89% and 69.99.4% 

respectively for testing datasets, when all the cough features 

were used to train the model. Mean sensitivity and 

specificity values jumped to 799% and 72.78.7% when 

only selected cough features were used. In all 22 features 

were selected out of 63 after the feature optimization. The p-

value of 0.4 was used for feature selection. The selected 

features were 1 each from BSG, LogE and Kurt; 2 from 

NGS; 3 from ZCR; 5 from formant frequency; and 9 from 

MFCC. Table 2 shows the mean sensitivity, specificity, 

accuracy and kappa results for training and testing datasets.  

The kappa agreement (widely used statistic in situations 

where the agreement between two techniques is compared) 

between the LR-model and reference method was 0.520.1. 

Figure 1 show the histogram plots for the sensitivity and 

specificity obtained using 200 training and testing datasets. 

Table 3 shows the contingency table for the best LR-model 

among 200 and Fig.2 shows the model probability output   

(probability that the given cough is wet) and targeted 

TABLE II 

MEAN STD VALUES FOR SENSITIVITY, SPECIFICITY, POSITIVE 

PREDICTIVE VALUE (PPV), NEGATIVE PREDICTIVE VALUE (NPV), 

ACCURACY AND KAPPA, FOR 200 DESIGNED LR MODELS 

200 

Datasets 

Using all the cough 

features 

Using selected cough 

features 

Training Testing Training Testing 

Sensitivity 100 74.8 95.93 79 

Specificity 100   72.7 

PPV 1000.1 75.76.4 80.93.9 78.35.6 

NPV 1000 708 96.61.6 74.48.6 

Accuracy 100 72.66.1 88.72.7 76.15.5 

Kappa 1 0.450.12 0.770.05 0.52 
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wet/dry cough class. It has the sensitivity of 90%, specificity 

of 80% and a high kappa agreement of 0.71. 

  

 

 

IV. CONCLUSION 

In this paper we presented an automated algorithm to 

classify Wet and Dry cough using mathematical features 

extracted from the cough sound. Our method can classify 

Wet and Dry coughs with high sensitivity (79%) and 

specificity (72.7%) and with a good agreement (kappa=0.52) 

with the expert human scorer. Proposed method carries the 

potential to develop as a useful clinical tool for long term 

cough monitoring, in the assessment of treatment efficacy or 

in characterizing the lower respiratory tract infections. This 

is the first known method for Dry/Wet classification, 

presented with complete training and testing results on 

significantly large cough samples (178 cough samples from 

46 subjects). It is also the first effort to automate the 

Wet/Dry classification in pediatric population with range of 

respiratory infectious diseases. In the future, work will focus 

on increasing the data size and statistically analyzing the 

selected features by considering the impact of inclusion and 

exclusion of a certain feature.  
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Fig 1. Histograms of sensitivity and specificities for 200 training and 

testing datasets. Only selected features were used for LR model designing.  
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Fig 2. Probability output of the best trained LR model (LR=149) for the 
test subjects. Solid line is the probability and dashed line is the target 

wet/dry cough sound class. Threshold is the probability threshold applied 

to categorize cough into wet or dry. Note that the threshold was set at 0.3 
instead of 0.5 normally used in LR modeling. This value was obtained 

after optimizing the results to get minimum mean training sensitivity of 

>90%, which can be seen in Fig.1 
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TABLE III 
CONTINGENCY TABLE FOR BEST LR MODEL (LR=149) 
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