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Abstract—We designed a novel approach for multi-lead QRS
detection. The algorithm uses one equation with two different
window widths to generate a feature signal and a detection
threshold. This enables it to adapt to various changes in QRS
morphology and noise levels, resulting in a detection error
rate of just 0.29% on the MIT-BIH Arrhythmia Database.
The algorithm is also computationally efficient and capable of
resolving differences between multiple leads by automatically
attaching a confidence value to each QRS detection.

I. INTRODUCTION

The electrocardiogram or ECG is a periodic signal where

each period or heartbeat comprises various waves (namely

the P, Q, R, S and T-waves) depicting cardiac depolarization

and repolarization as seen from one or more leads. The QRS

complex represents ventricular depolarization and is usually

the most prominent wave in a given heartbeat (due to its rapid

rate of change and large amplitude). This makes it very useful

as a fiducial point both for detecting other waves as well as

for measuring heart rate, rhythm, and related clinical indices

such as heart rate variability.

QRS morphology can vary greatly, due to both noise and

physiological reasons such as arrhythmias. Potential noise

sources include electromyographic (EMG) interference from

muscular activity of noncardiac origin, 50 and 60 Hz power

line artefact, baseline drift, amplitude modulation due to

respiratory rhythms, T-waves with similar frequency and

amplitude characteristics, and composite noise arising from

a combination of sources.

In this paper, we present and validate a novel multi-lead

QRS detection algorithm that is highly resistant to noise

artefact while requiring little computational power and no

manual input.

II. ALGORITHM

QRS detection algorithms generally consist of two stages:

a pre-processing or feature extraction stage including linear

and nonlinear filtering, and a decision stage involving peak

annotation and decision logic. In most cases, the decision

stage is heuristic and the performance of the algorithm

depends heavily on the pre-processing results [1].

Our algorithm depends equally on both stages, enabling

it to perform accurately without requiring complex pre-

processing. Both the feature signal and the detection thresh-

old are derived using the same equation, only with different

window widths. We therefore demonstrate that the techniques

that are often used to enhance the signal-to-noise ratio (SNR)
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of the QRS complex can also be used to generate an adaptable

threshold that is low enough to trigger a detection for almost

every QRS regardless of amplitude or morphology, yet high

enough to disregard artefact and irrelevant fluctuations in the

signal.

As seen in Figure 1, the algorithm supports anywhere from

1 to N leads (where N is an is an arbitrarily high number)

by first performing QRS detection for each individual lead

and then aggregating the leads in a weighted sum which

emphasizes reliable leads and reduces the impact of noisy

ones.

A. Single-lead detection

1) Pre-processing: The first step of the algorithm is a

band-pass filter which enhances the QRS and reduces the P

and T-waves. A fourth-order Butterworth filter with a pass-

band of 7 to 17 Hz provides good detection performance

and is within the prescribed range for QRS detection [1], [2].

The filtered signal y(n) of sampling frequency f samples per

second is then differentiated to highlight the rapid changes

common in the QRS, and rectified using a simple absolute

value operation to ensure that every significant peak is

positive and that only one threshold is necessary for QRS

detection (1). This is a standard pre-processing approach

and variations of it have been used since the earliest QRS

detection algorithms [2].

y(n) = |y(n)− y(n− 1)| (1)

2) Feature and threshold signal generation: Following

pre-processing, a moving average filter is used to generate

the feature signal s1(n) (2) and threshold signal t1(n) (3).

The ideal feature signal window width p should be slightly

larger than the average QRS width (200 milliseconds in our

implementation although moderate fluctuation of any of the

constants used in this algorithm does not significantly affect

performance) while the threshold signal window width q
should be greater than the longest RR interval or heartbeat

duration expected (3 seconds in our implementation). We

chose to place greater weight on the points at the centre of

the window in order to increase the threshold around peaks

and avoid a few false positives. In order to keep the running

time of the algorithm independent of the window widths,

this feature is implemented with the mean of three uniform

moving averages; one with the feature signal window width,

another with the threshold signal window width and a third

one with a window width equal to the geometric mean of the

first two (respectively 200 milliseconds, 3000 milliseconds

and 775 milliseconds in our implementation).
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Figure 1. The various stages of our algorithm: after bandpass filtering, differentiation and rectification, the feature and threshold signals for each lead
are generated from the same equation and compared to perform preliminary QRS detection. The outcome is used to assign confidence weights on the
leads before they are normalized and summed to obtain the overall detection results, from which ventricular flutter and fibrillation segments are optionally
identified.

s1(n) =
1

p+ 1

n+⌊ p

2
⌋

∑

i=n−⌈ p

2
⌉

y(i) (2)

t1(n) =
1

3























s1(n) +

n+⌊ q

2
⌋

∑

i=n−⌈ q
2
⌉

y(i)

q + 1
+

n+
⌊

√

pq

2

⌋

∑

i=n−
⌈

√

pq

2

⌉

y(i)

⌈√
pq

2

⌉

+
⌊√

pq

2

⌋

+ 1























(3)

3) High-amplitude-T-wave avoidance: Occasionally, T-

waves can have similar amplitude and frequency character-

istics as their preceding QRS complexes, resulting in false

positives. They are usually avoided by not allowing the

threshold to drop after a QRS detection until a refractory

period of about 200 milliseconds has passed [2]. We achieve

this by maintaining the threshold signal amplitude at its

maximum throughout a detected QRS (which has the added

advantage of avoiding merging P and T-waves to the QRS)

and incorporating a decay factor α = 20/f following the QRS

in order to slow the threshold signal amplitude drop (4).

t2(n) =

{

max
i∈QRSn

[t1(i)] s1(n) > t1(n)

αt1(n) + (1− α)t2(n− 1) s1(n) ≤ t1(n)
(4)

B. Multi-lead detection

Once the feature and threshold signals are generated, QRS

detection is simply a matter of finding the points where

the feature signal amplitude is greater than the threshold

signal amplitude, while merging neighbouring points (less

than 50 milliseconds apart) and excluding exceptionally short

detections (also less than 50 milliseconds). This entire section

can be skipped if we are working with a single-lead ECG.

Otherwise, performing QRS detection using multiple leads

is all about resolving the differences between the leads. Our

strategy consists of attaching a confidence factor to each

potential QRS detection; this confidence factor is influenced

by the amplitude strength of the detection as well as the

likelihood of the corresponding RR interval.

1) RR interval confidence: Each RR interval is compared

to the moving average of the surrounding five RR intervals.

While some variability is expected, large deviations from the

average could signal an incorrect detection. We minimize

the impact of such incorrect detections by reducing their

weight; specifically, we reduce the amplitude of the feature

signal in such a way that the difference between it and the

threshold signal becomes 10dk − 1 smaller (6), where dk is

the maximum neighbouring percentage difference between

the current RR interval RRk and the moving average of

the surrounding RR intervals (5). This means that if the

RR interval is equal to the moving average, the feature

signal is unchanged while if the RR interval is twice the

moving average, the feature signal becomes ten times closer

to the threshold signal (but remains on the same side of

it). Note that this step does not compromise our ability

to detect premature beats unless they are only seen in a

minority of leads which is not usually the case. Assigning

a low confidence to a detection does not mean that it is

automatically excluded; it is only excluded if other leads with

higher confidence values disagree with it.
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2) Normalization: The next step serves the dual purpose

of measuring the strength of a QRS detection and normalizing

the signal in order for all leads to have the same scale. This

is performed by dividing the difference between the feature

and threshold signal by their sum, then smoothing using a

moving average filter (7). A positive result v(n) is interpreted

as a QRS detection and a negative result as lack of one. The

absolute value of the result represents the confidence in either

decision. Figure 2 shows the algorithm stages described up

to this point performed on an example signal.
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Figure 2. The various stages of our algorithm seen on the first lead of an
example ECG. (a) Input signal. (b) Band-pass filtering. (c) Differentiation
and rectification. (d) Solid feature signal and dashed threshold signal.
(e) Threshold signal modification for T-wave avoidance. (f) RR interval
confidence weighing. (g) Amplitude differerence normalization. The last two
steps of the algorithm (lead combination and VF exclusion) are not shown
since one would require an additional lead and the other a VF rhythm.

3) Mean of leads: Combining detections from N different

leads is now simply a matter of summing their normalized

results vi(n) where i is the lead number (8); scale differences

among the leads are no longer an issue, and disagreements are

resolved in favour of the leads with a majority of relatively

confident detections. We chose to compute the mean of

different leads instead of their sum in order for the scale

of the result to be independent of the number of leads.

z(n) =
1

N

N
∑

i=1

vi(n) (8)

C. Ventricular flutter and fibrillation detection

Ventricular flutter and ventricular fibrillation (VF) are two

heart rhythm abnormalities where the heart “quivers” instead

of fully beating. As such, they lack a clear QRS complex

and their corresponding ECG looks more or less like a sine

wave which alternates between positive and negative peaks

without a noticeable baseline. By design, our feature and

threshold signals have very close amplitude throughout VF

regions; this can be understood intuitively since the moving

average of a sine wave is roughly constant whether we are

dealing with a short or long averaging window. This results in

low-confidence QRS detections during VF rhythms, which is

reflected by the mean of the leads hovering around zero with

a very small moving standard deviation for several beats.

We use this property to automatically and easily identify

VF rhythms. This detection is essential in many cases in-

cluding automated defibrillators. However, VF waves are not

considered to be QRS complexes per se in standard database

annotations [3] and as such they need to be excluded in order

to compare our algorithm with others on an equal footing.

We therefore program our algorithm to automatically identify

VF and exclude it for this validation, making the two criteria

for a QRS detection:

• z(n) > 0 at the beginning and end of an interval of at

least 50 milliseconds where no two positive points are

more than 50 milliseconds apart. The midpoint of that

interval is selected as the QRS fiducial point.

• the moving standard deviation of z(n) with a window

size q should be greater than the VF threshold. Even

a very low threshold (0.003 in our implementation) is

capable of identifying most VF rhythms, enabling us

to perform this step without significantly increasing the

number of false negatives.

III. METHODS

A. Database

We tested our algorithm on the MIT-BIH Arrhythmia

Database [3] which is part of PhysioBank [4]. The database

contains 48 half-hour two-lead ECG recordings exhibiting

various arrhythmias and noise levels, and is frequently used

to validate QRS detection algorithms. Parts of the database

are often manually excluded from the validation of other

algorithms in the literature; this could include entire record-

ings exhibiting high levels of noise or rhythm abnormalities,

challenging portions of recordings (such as the annotated

sustained VF rhythm in recording 207), or the second lead

which is significantly more noisy than the first one. We chose

to use the entire database as we consider this to be the most

unbiased test of our algorithm.

B. Performance quantification

The performance of QRS detection algorithms is usually

evaluated by the number of true positive (TP), false positive

(FP), and false negative (FN) detections. We considered a

detection to be a true positive if it occurred within 75 mil-

liseconds (considerably less than the duration of an average

QRS) of an annotation. Sensitivity (Se), positive predictivity

(+P), and detection error rate (DER) are calculated as follows:

Se =
TP

TP + FN
(9)

+P =
TP

TP + FP
(10)

DER =
FP + FN

TP + FN
(11)
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IV. RESULTS

Table I shows our detection performance on each of the

48 recordings of the MIT-BIH Arrhythmia Database. The

algorithm achieves an overall detection error of only 0.29%

with a sensitivity of 99.85% and a positive predictivity of

99.86%. To our knowledge, this exceeds the performance

of any other algorithm with published results using all

recordings of the same database. This can be seen in the

comprehensive review by Köhler et al. [1] and more recent

works presenting and referencing state-of-the-art algorithms

employing diverse methods such as wavelet coefficients and

multiscale mathematical morphology [5], [6], [7], [8]. It is

worth noting that some of the cited algorithms require manual

input to achieve their published performance; this usually

involves the manual exclusion of the VF segment in recording

207 and/or the noisy second channel in all recordings.

V. DISCUSSION

A. Time complexity

The algorithm’s running time is linear in the length (num-

ber of samples) of the input signal, which makes it ideal

for embedded and low-power applications such as mobile

and implantable devices. Practically speaking, a MATLAB

(Version R2010b, The MathWorks Inc., Natick, MA, 2010)

implementation running on our entry-level dual-core com-

puter analyzes each half-hour recording in less than five

seconds.

B. Multi-lead detection

Our algorithm does not depend on any particular lead

configuration; as such, is does not need to know in advance

the number of leads, their positions, or their relative noise

levels. Instead, it considers all input leads and has the ability

to automatically boost relevant leads and reduce the impact

of noisy ones. This minimizes human input and makes it

a very versatile algorithm useful for multiple applications

from 12-lead hospital electrocardiograms to ambulatory long-

term recording and exercise testing where lead numbers and

positions can vary and detached leads are not uncommon.
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