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Abstract— A database of fetal heart rate (FHR) time series
measured from 7 221 patients during labor is analyzed with
the aim of learning the types of features of these recordings
that are informative of low cord pH. Our ‘highly comparative’
analysis involves extracting over 9 000 time-series analysis
features from each FHR time series, including measures of
autocorrelation, entropy, distribution, and various model fits.
This diverse collection of features was developed in previous
work [1]. We describe five features that most accurately classify
a balanced training set of 59 ‘low pH’ and 59 ‘normal pH’
FHR recordings. We then describe five of the features with the
strongest linear correlation to cord pH across the full dataset
of FHR time series. The features identified in this work may be
used as part of a system for guiding intervention during labor
in future. This work successfully demonstrates the utility of
comparing across a large, interdisciplinary literature on time-
series analysis to automatically contribute new scientific results
for specific biomedical signal processing challenges.

I. INTRODUCTION

During birth, a baby’s oxygen supply can be compromised
and cause birth asphyxia (suffocation). Birth asphyxia can
lead to seizures, permanent brain damage, and the death of
the newborn. Intervention in the form of a Caesarean section,
or the use of forceps or ventouse (vacuum), is required to
prevent this chain of events, but such interventions can them-
selves cause complications and would preferably be avoided.
Currently, the decision to intervene is made on the basis
of an electronic recording of the baby’s heart rate during
labor, a cardiotocogram (CTG). The mechanisms underlying
this recording are complex and its analysis by eye is highly
unreliable, whereby different experts can make conflicting
decisions on the basis of the same CTG trace [2]. This
subjectivity in decision-making can also lead to litigation
when an ‘incorrect’ decision results in a complication. These
factors have led to a push for research into an objective,
computerized system for analyzing CTG recordings to assist
the decision-making process [2]. Previous reports on this
area have been plagued by very small datasets (typically
containing less than 500 time series) [3]–[5]; it is difficult
to reach reliable conclusions using such datasets for which
so few compromised cases are available. The present work
is distinguished both by the large size of the dataset: 7 221
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FHR time series, and the scale of the analysis: over 9 000
time-series analysis features are compared.

Our primary aim in this paper is to contribute to a system
being developed for intrapartum CTG analysis, OxSys [6],
by providing a set of useful features derived from FHR
time series. Rather than devising new types of features
or manually comparing a small number of hand-picked
candidates, we take the somewhat unusual approach in this
work of comparing simultaneously the performance of over
9 000 features developed across the scientific time-series
analysis literature. Using this highly comparative approach,
those features that are the most successful are retrieved and
subsequently analyzed and interpreted.

II. DATA AND METHODS

A. Data

The initial dataset analyzed in this paper contains 7 568
FHR time series sampled at 4 Hz and recorded in the last
30 min before delivery. The data met a set of quality-based
criteria from an initial set of 107 614 deliveries in John
Radcliffe hospital, Oxford, UK between 20 April 1993 and
28 February 2008 [6], and were preprocessed to remove
various known artifacts [7]. The data were processed further
in this work: by linearly interpolating short durations of
missing values, trimming longer durations of missing val-
ues, and removing time series with a large proportion of
missing values, resulting in a dataset containing 7 221 FHR
recordings. The data were partitioned into balanced training
and test sets according to a previous study [6]. Within each
set, each FHR recording is classified according to the cord
pH of the corresponding baby, as either low pH (below 7.1)
or normal pH (above 7.1). The training set contains 59 time
series of each class, and the the test set contains 117 time
series of each class. Examples of both classes of time series
in the training dataset are shown in Fig. 1.

B. Highly comparative analysis

Our highly comparative time-series analysis method is
outlined in this section, and is described in detail elsewhere
[1]. The method relies on a collection of 9 613 algorithms for
extracting features from time series. These algorithms span
a large variety of time-series properties, summarizing their
autocorrelation, stationarity, summaries of their power spec-
tra, wavelet decompositions, their distribution of values, fits
to various time-series models (e.g., autoregressive, Gaussian
Process, and Hidden Markov models), measures from non-
linear time-series analysis (e.g., correlation dimension esti-
mates, nonlinear prediction errors, fractal scaling properties),
information theoretic quantities (e.g., permutation entropy,
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Normal pH (7.28--7.32)Low pH (6.83--7.09)

Fig. 1. Fetal heart rate time series in each of two classes: low pH and
normal pH. The plotted time series are from the training set and span the
full range of pH values in each group, which is given in parentheses.

Sample Entropy, Lempel-Ziv Complexity), and others [1].
Each of these myriad methods is encoded in the same way:
as an algorithm that maps an input time series to a single real
number. To compare their performance on a given task, all
of these features are evaluated on all FHR time series in the
dataset. Some algorithms cannot be applied appropriately to
some time series, e.g., fitting a positive-only distribution to a
time series that is not positive-only. In this case, algorithms
return a special value: an infinity or a NaN, and if this
occurred at least once across the dataset, such features were
removed from our analysis. In this way, the initial set of
9 613 features was reduced to approximately 7 600 features.

C. Classification and Clustering

Classification rates quoted throughout this paper were
obtained from a simple linear discriminant classifier, im-
plemented using the classify function from MATLAB’s
Statistics Toolbox1, which provides a highly intuitive and
interpretable result: a linear partition of the feature space
[8]. For the single features focused on in this paper, linear
classification boundaries are simply thresholds on the value
of each feature.

Clustering is used to automatically reduce sets of features
to smaller, representative subsets in this work. We used aver-
age linkage clustering, as implemented using the linkage
function from MATLAB’s Statistics Toolbox.

III. RESULTS

A. Classification

First we analyze the balanced training and test sets de-
scribed above, with the aim of distinguishing FHR time
series measured from fetuses with low cord pH at birth. We
calculated the (in-sample) linear misclassification rates for

1We used MATLAB 2011a. MATLAB is a product of The MathWorks,
Natick, MA.

each of 7 586 features (those with no special-valued outputs)
on the training set. We then selected the nineteen most
successful features: those with a false discovery rate [8] less
than 0.001 (cf. [1]), corresponding to a linear misclassifica-
tion rate under 30%. Since some of these nineteen features
are highly correlated to one another across the dataset,
we proceeded to construct a smaller set of features that
minimizes this redundancy. Linear correlation coefficients
calculated between all pairs of these nineteen features across
the FHR dataset are shown in Fig. 2. A dendrogram relating
the features was constructed using average linkage clustering
and is shown above the pairwise correlation matrix in Fig. 2.
By thresholding the dendrogram, the features were clustered
into five groups. Features within each cluster have high linear
correlations to one another and can be well-summarized by a
single representative member. These representative features
were chosen as those with the lowest misclassification rate
in each cluster, and are labeled using stars in Fig. 2. In this
way, a more manageable set of five relatively independent
features was identified that effectively summarizes the most
successful time-series analysis algorithms for distinguishing
babies with low cord pH from FHR time series recorded
during labor.
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Fig. 2. Clustering is used to select five features that best represent the
nineteen features with a misclassification rate under 30%.The magnitude
of linear correlation coefficients, |R|, calculated between all pairs of the top
nineteen features are plotted as a colored matrix. The name of each feature
is labeled to the left of the plot. A dendrogram constructed using average
linkage clustering is plotted above the pairwise correlation matrix, and is
cut at the point plotted with a dashed line to create five clusters of features.
The resulting clusters are represented using black squares in the pairwise
correlation matrix. The features with the lowest misclassification rates in
each cluster are selected to represent that cluster, and are indicated using
stars in the correlation matrix. The performance of each of these features
on the test set is illustrated in Fig. 3.

We now describe these five features, and investigate
their performance on the test dataset. There is insufficient
space to describe each feature in detail, but brief sum-
maries are as follows: (i) CO trev mi num is a quantity
related to the time-reversal asymmetry of a time series,
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(ii) OLbs2 returns the ratio of standard deviations before
and after removing 2% of the highest and lowest values
of a time series, (iii) dynpick200 meanapen1 02 averages
local Approximate Entropy [9], ApEn(1,0.2), estimates, (iv)
ST dyntrans40 1 mineigfexp adjr2 calculates 1-step tran-
sition matrices for different alphabet sizes and fits a decaying
exponential to the minimum eigenvalues of these transition
matrices, and (v) dynpick200 stdsampen1 02 measures the
variation in local Sample Entropy [10], SampEn(1,0.2), es-
timates from the time series. Distributions of the outputs of
each of these features on the test data are shown in Fig.
3. These distributions provide an interpretable difference in
the properties of the two groups of FHR time series: e.g.,
as shown in Fig. 3B, we see that healthy FHR recordings
(gray) typically have more extreme outliers (and hence lower
values of OLbs2) compared to the low pH group (black). As
indicated in Fig. 3, using a simple threshold on the output
of each feature, in-sample misclassification rates range from
26–29%, and out-of-sample misclassification rates range
from 31–38%. We note that classifiers that combine multiple
features for this dataset (constructed using greedy forward
feature selection [1]) showed no improvement in out-of-
sample performance over single-feature classifiers.
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Fig. 3. Five representative features with a misclassification rate under
30% on the training set show good performance on the test set.
Probability distributions for the ‘low pH’ group (black) and the ‘normal
pH’ group (gray) are plotted for each feature applied to the balanced test
dataset. The horizontal axis represents the un-normalized output from each
feature. Linear discrimination thresholds learned on the training set are
indicated using a dashed black line and are used to classify these testing
data. Misclassification rates on the training set (the former number) and the
test set (the latter number) are annotated to the top left of all plots.

B. Regression onto arterial cord pH

We now investigate features with outputs that correlate
linearly with the cord pH across the full dataset of 7 221 FHR
time series. The magnitude of linear correlation coefficients,
|R|, were low, with |R| < 0.3, but significantly larger
than would be expected by chance (i.e., when the output
of features are shuffled at random, cf. multiple hypothesis
testing [1], [8]). In an analogous method to that shown for
the classification task above, clustering was used to construct

a set of five features that are representative of those with
the strongest linear correlation coefficients, |R|, to cord pH.
These five features are now described briefly, with correlation
coefficients given in parentheses: (i) cv2 (R = −0.28) re-
turns the second order coefficient of variation: (σ/µ)2, where
σ and µ are the standard deviation and mean of the time se-
ries, respectively, (ii) mead (R = −0.28) returns the median
absolute deviation, 〈|x−median(x)|〉, a measure of spread of
the time series, x, (iii) ST dyntrans40 1 mineigfexp adjr2
(R = 0.25) is a quantity derived from transition ma-
trices, as described for the classification task above, (iv)
fd exp1 rmse h30 (R = 0.25) returns the goodness of an
exponential distribution fit to the time-series values, and (v)
CO embed2 tau arearat (R = −0.24) returns the ratio of
areas spanned by points in a two-dimensional time-delay
embedding space for the time series [11]. Interpreting the
sign of the correlation also allows us to interpret the results
directly; for example, fd exp1 rmse h30 has R = 0.25,
revealing that FHR recordings associated with a higher cord
pH have distributions that are typically closer to exponential
than those with lower cord pH.

C. EveREst plots

The great majority of FHR recordings studied in this work
correspond to healthy babies with normal cord pH. For exam-
ple, consider the following three groups: (i) low pH, defined
as patients with an arterial cord pH ≤ 7.05, contains 302
patients, (ii) compromised, defined as patients with a reported
severe, moderate, or mild reported compromise [6], contains
795 patients, and (iii) low pH and compromised, defined as
patients that fulfill both of the above criteria, contains just
110 patients. These problematic cases may be preventable
and are the most interesting to clinicians who must decide
whether an intervention is appropriate in real time during
labor. Distinguishing such small numbers of problematic
scenarios from a large total cohort of 7 221 patients is
difficult. One way of proceeding, which we follow here, is to
divide the total cohort into Ngroup equally-populated groups
and compare the proportion of compromised cases in each
group. A graphical representation of this approach has been
termed an Event Rate Estimate (EveREst) plot [6].

By ordering all FHR time series according to the value of a
given feature, we constructed EveREst plots using Ngroup =
10 for the successful features selected above. An example
is shown in Fig. 4 for the mead measure of spread (〈|x −
median(x)|〉), which was selected from the regression task
described above. Compared to the distributions shown in Fig.
3 for a balanced dataset, the distribution in Fig. 4A requires
a more subtle interpretation, as the low pH condition (plotted
black) contains just 302 recordings, compared to the 6 919
recordings with normal pH (plotted gray). However, dividing
the patients into equal groups, as in Fig. 4B, reveals the
proportion of problematic patients in each equally-populated
group, which can be used to determine thresholds by which
the two groups could be separated. Note that other features
selected in the classification and regression tasks above have
qualitatively similar EveREst plots to that shown in Fig. 4B.
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For this mead feature, there is a relatively sharp rise in
low pH and compromised cases in the final bin. Patients in
this bin: with 〈|x−median(x)|〉 > 19.25, therefore have an
increased risk of both delivering a baby with compromise,
and of delivering a baby with low cord pH. As with most
real-world applications, predicting compromise or low cord
pH from FHR recordings is an complex and subtle problem
that depends on a large number of variables. Thus, although
not clinically useful on its own, this simple mead measure of
spread is both informative and extremely easy to compute.
As much as an eight-fold increase in risk is observed here
(for the low pH and compromised group in the final bin),
making this feature a good candidate for further investigation
in future work.
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Fig. 4. Distributions and EveREst plot for a measure of spread
feature: mead. A Distributions are plotted of the low pH (black) and
normal pH (gray) groups defined by a pH threshold of 7.05. There are
302 FHR recordings with a corresponding arterial cord pH ≤ 7.05, and
6 919 with pH > 7.05. B The EverEst plot was generated by dividing the
7 221 patients into 10 equally-populated groups, ordered by their mead,
〈|x − median(x)|〉. The partitions that define these equally-populated
groups are shown as dashed lines in the upper plot; each group is represented
by its mean in the EverEst plot. Three types of compromised patients are
represented in the EveREst plot: (i) low pH (≤ 7.05), plotted green (and
represented as distributions in the upper plot), (ii) compromised, plotted
orange, and (iii) both low pH and compromised, plotted blue. A useful
predictor of compromised babies would involve simply measuring the mead
of FHR time series during labor: a high value (i.e., greater than 19.25)
indicates an increased risk of compromise.

IV. CONCLUSIONS
Five representative features were selected from those that

were most successful at classifying FHR time series, and an-
other five were selected to represent those with the strongest
linear correlations to arterial cord pH across a dataset of
7 221 FHR time series. One of these features occurs in both
sets, and hence we have a resulting set of nine candidate
features that will be investigated as part of the Oxford System

for intrapartum CTG analysis: OxSys [6]. Combined with
features from other CTG recordings and additional clinical
data, future work will focus on using these features to build
a commercial diagnostic system—an intrapartum analogue
of the established Dawes-Redman system [12].

Using the example of FHR analysis, this paper demon-
strates the broad applicability of our highly comparative
time-series analysis methodology. The empirical structure of
the labeled data was used to select features automatically,
from a diverse and interdisciplinary scientific literature on
time-series analysis. Although our set of over 9 000 features
is far from exhaustive, we have successfully identified some
of the most promising features from what is a comprehensive
collection, and shown how they can be interpreted in the
context of this FHR analysis problem. Extensive further work
will be required to interpret the new features clinically, to
integrate them into OxSys, and to study their relationships
with existing FHR features. These candidate features will
be ultimately become components of multivariate analyses
including other FHR features: standard morphological fea-
tures (e.g., baseline, deceleration, variability) and clinical
information about labour (e.g., use of epidural, gestation
age).
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