
Adaptive Pulse Segmentation and Artifact Detection in
Photoplethysmography for Mobile Applications

Walter Karlen1, Member, IEEE, J. Mark Ansermino1, and Guy Dumont1 Fellow, IEEE

Abstract— Pulse oximeters non-invasively measure heart rate
and oxygen saturation and have great potential for predicting
critical illness. The photoplethysmogram (PPG) recorded from
pulse oximetry is often corrupted with artifacts. These artifacts
render the derived vital signs inaccurate.

We present a novel real-time algorithm for segmentation of
the PPG into pulses and for the classification of artifacts. The
Incremental-Merge Segmentation (IMS) algorithm operates in
the time domain and extracts morphological features of the
PPG. These features are line segments that are classified as
pulses or artifacts using adaptive thresholds.

The IMS algorithm was evaluated using the Complex System
Laboratory (CSL) Benchmark dataset. A sensitivity of 98.93%
and positive predictive value of 96.68% have been obtained,
which compares very favorably with the CSL benchmark
algorithm. The novel algorithm is currently being implemented
into mobile phone pulse oximeters.

I. INTRODUCTION

Pulse oximeters offer a non-invasive measurement of
the photoplethysmogram (PPG) from which heart rate and
oxygen saturation (SpO2) is derived. Respiratory rate can
also be estimated from the PPG [1]. SpO2, heart rate, and
respiratory rate are predictors of critical illness, such as sep-
sis, pneumonia and pre-eclampsia, whose outcome is more
severe in remote and resource poor areas. The non-invasive
measurement of these vital signs with a single device like the
pulse oximeter would provide an ideal solution for diagnosis
and monitoring of diseases. However, current clinical pulse
oximeter monitors are not tailored to perform spot check
diagnostics, do not provide respiratory rate calculations,
and their bulk, high-cost, and poor user interfaces prevent
widespread adoption in resource poor areas.

Pulse oximeters use two light emitting diodes (LEDs)
that actively illuminate the patient’s tissue (usually at the
finger tip) alternately at two different wavelengths (red
and infrared). The intensity of the non-absorbed light at
each wavelength is measured with a photodiode. The light
absorption and transmission depends on the traveled light
path, optical density of the tissue, volume of blood present
in the tissue, and blood composition [2]. This allows the
display of the variation of blood volume over time in the
finger resulting in a PPG. While oxygenated hemoglobin
absorbs more infrared light and allows more red light to pass
through the tissue, deoxygenated hemoglobin allows more
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infrared light to pass and absorbs more red. This property of
hemoglobin allows for SpO2 estimation.

Combined with a pulse oximeter, the inherent capabilities
of a standard mobile phone have the potential to overcome
the limitations of a standalone pulse oximeter, and enable
the intelligent analysis and intuitive communication of in-
formation to a health care worker. The low-cost technology
of mobile phones is readily available in low income countries
and offers computing capabilities for biomedical signal pro-
cessing and decision making. In addition, the battery power
of mobile phones guarantees portability and usage in remote
areas that are not connected to the power grid. This same
feature, however, also challenges the engineer to maximize
available resources. We have previously demonstrated the
Phone Oximeter, a mobile phone application that connects a
high-end pulse oximeter to a mobile phone, as an intuitive
tool for the operating room [3]. We are now working towards
low-cost pulse oximeter solutions adapted for the diagnosis
of global diseases. With the aim of developing power effi-
cient signal processing algorithms for the calculation of vital
signs with a pulse oximeter on mobile phones, we present our
recent algorithm developments for robust beat and artifact
detection in the PPG.

A. Background

The raw PPG waveform is characterized by an AC com-
ponent that corresponds to the heart beat induced variation
of blood volume in the arteries and a DC component that
corresponds to the constant amount of absorption from pre-
dominantly tissues and non-pulsatile venous blood. Only the
AC component is relevant for the extraction of the heart beat.
However, artifacts can be recognized in both the AC and DC
components (Fig. 1). Artifacts are frequently accompanied by
a large rapid fluctuation of the DC component. Unfortunately,
most commercial pulse oximeter devices provide only a
band-pass filtered and/or auto-scaled PPG signal where the
original DC component has been eliminated and is not visible
to the user. In these heavily filtered situations the PPG signal
frequently becomes saturated and clipped due to artifacts and
baseline shifts (Fig. 1).

B. Previous Work

A wide range of algorithms have been suggested to detect
pulses and to detect or eliminate artifacts in PPG signals.
Many algorithms segment the PPG. The segmentation is
mainly done using the derivative of the PPG signal [4],
[5]. Other approaches include multi-stage band-pass filters
[6] or adaptive frequency estimators [7]. In addition, to
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Fig. 1. PPG signal at different processing stages corrupted by artifacts.
With auto-scaled signals, clipping occurs during artifacts and large baseline
shifts.

limit errors, physiological limits for heart rate are taken
into account [5]–[7]. Artifacts are detected by comparing
the morphology of the PPG beats to thresholds [8] or a
cross-correlation is performed with a template waveform
[4]. Corrupted PPGs have been identified using Independent
Component Analysis [9]. All these methods are relatively
computationally intensive and not well suited for a mobile
device. Our aim was to develop an accurate real-time beat
and artifact detection algorithm for PPG signals that operates
in the time domain, requires low processing power and is
ready to be implemented in a battery-powered mobile device.

II. ALGORITHM DESCRIPTION

The periodic component must be extracted from the PPG
signal to perform automated heart rate and artifact detection.
The regular heart beat pulsations are characterized by a
maximal volume peak, sometimes followed by a secondary
peak called the dicrotic notch. The waveform is processed
with a line segmentation algorithm that segments the PPG
into pulses. Since PPG pulse components are based on a
morphological shape that can be characterized by consecutive
lines, this algorithm permits the desired trend calculation in
an efficient manner. Segments can be easily identified and
compared. Mismatching segments indicate potential artifacts.

A. Preprocessing

No other filtering than the standard band-pass filter ap-
plied by pulse oximeter manufacturers to remove the DC
component of the PPG signal is necessary.

B. Line Segmentation

The proposed Incremental-Merge Segmentation (IMS)
method (Algorithm 1) is a mixture of Iterative-End-Point-
Fit [10] and Incremental algorithms [11] that were origi-
nally developed for computer vision and mobile robotics
applications. A similar approach has also been used for

Algorithm 1 Incremental-Merge Segmentation algorithm
1: seg ← 1; z ← 1; segInLine← 1
2: linez ← constructLine([pseg, pseg+m])
3: z ← z + 1; seg ← seg + 1
4: loop
5: linez ← constructLine([pseg×m, p(seg+1)∗m])
6: if αz & αz−1 have the same sign then . merge
7: linez−1 ←
8: constructLine([p(seg−segInLine)×m, p(seg+1)∗m])
9: seg ← seg + 1

10: segInLine← segInLine+ 1
11: else . start new segment
12: z ← z + 1
13: seg ← seg + 1
14: segInLine← 1
15: end if
16: end loop
Where m+1 is the size of a line segment, pn is the nth point
of the time series, z is the counter for lines, seg is the counter
for segments, αz is the slope of line z, and segInLine is
the counter for line segments in a constructed line.

the compression of ECG signals with segmentation [12].
Because of its sliding-window structure, the IMS algorithm
is simple, fast and can be executed in real-time. The tuning
of the algorithm requires the setting of only one parameter
m (length of line segments in number of sample points
minus one), which is dependent on the sampling rate. Line
segments are constructed by connecting the first and last
points of the line (End-Point-Fit). After the slopes of these
lines are computed, consecutive lines with matching slopes
are incrementally combined. If the slopes do not match, a
new segment is constructed.

C. Line Classification

After a line segment is finalized it is classified. Lines
falling within an amplitude range between ThAhigh and
ThAlow or larger than duration ThT = 0.03 s are classified
as 1) an up-slope, 2) a down-slope, or 3) a horizontal line.
To prevent misdetection of the dicrotic notch and artifacts as
individual pulses, the amplitude thresholds ThAhigh,low are
calculated adaptively as described in Algorithm 2.

Pulse peaks are identified as endpoints of the validated
up-slopes. The obtained features are amplitude of pulse,
maximum and minimum intensity of each pulse, and pulse
period which are also used for artifact detection.

D. Artifact Detection

Corruption of the PPG signal because of movement ar-
tifacts or sensor disconnection is detected online by com-
paring consecutive line amplitudes and intervals. Up-slopes
preceding and succeeding a horizontal line (clipping or
disconnection) are automatically labeled as artifacts (Fig. 2).
Further, up-slopes with amplitudes exceeding the adaptive
upper threshold ThAhigh are labeled as artifacts. Interbeat-
interval limitation is taken into account. Beats with less than
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Algorithm 2 Adaptive threshold algorithm
1: ThAlow ← θ1 × 0.6 . init thresholds
2: ThAhigh ← θ1 × 1.4
3: loop
4: if αz > 0 & αz−1 6= 0 & αz+1 6= 0 then
5: if θz ≥ ThAlow & θz ≤ ThAhigh then
6: ThAlow ← (ThAlow + θz × alowfast)/2

7: ThAhigh ← θz × ahighfast

8: λ← 0
9: else

10: if λ > 0 then . delay adaptation
11: Thlow ← (ThAlow + θseg × alowslow)/2

12: ThAhigh ← θz × ahighslow

13: end if
14: λ← λ+ 1 . increment flag
15: end if
16: end if
17: z ← z + 1 . increment line counter
18: end loop
Where ayx are the adaptation parameters, z is the counter for
lines, αz is the slope, and θz is the amplitude of line z.

50% of the previous valid interbeat-interval or less than the
physiological limit of 240 ms (250 bpm) are labeled by the
algorithm as artifacts.

III. EXPERIMENTS

For algorithm development and calibration, we used the
inVivo CapnoBase (CB) dataset [13]. Following institutional
review board approval, data was gathered from 59 children
and 35 adults receiving general anesthesia. The recordings
obtained included ECG (300 Hz), capnometry (25 Hz), and
PPG (100 Hz) signals. All signals were recorded with S/5
Collect software (Datex-Ohmeda, Finland) using a sampling
frequency of 300 Hz (PPG and capnometry with lower
sampling rates were automatically up-sampled). The dataset
including the annotation is available for download1. For this
study, 132 2-min long data segments were randomly selected.
A expert independently annotated each beat in the PPG using
the CapnoBase Signal Evaluation Tool [13]. The expert also
labeled the beginning and end of all visual artifacts in the
PPG waveforms.

The algorithm was compared to the algorithm presented
by [6] (CSL Reference algorithm). Two pulse oximetry
recordings (pox1 and pox2) were provided by the Com-
plex System Laboratory (CSL Benchmark dataset) and are
available online2. The data were obtained from two pediatric
cases in the pediatric intensive care unit. PPG was sampled at
125 Hz, band-pass filtered and auto-scaled. The CSL dataset
contained manual beat annotations from two independent ex-
perts and the automatic annotation from the CSL Reference
algorithm. The annotations of the expert with identification
”DT” were chosen as reference beats for this work. Since

1http://www.CapnoBase.org
2http://bsp.pdx.edu/Data/
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Fig. 2. Example output of the line segmentation algorithm. Up-slopes
adjacent to clipping are automatically labeled as artifacts.

the CSL Benchmark dataset did not contain annotations for
artifacts, the same independent expert that was annotating the
CB dataset also labeled the CSL dataset for visual artifacts.

Algorithm implementation, data processing and statistical
analysis were all performed using the Matlab software frame-
work (Mathworks Inc, Natick, USA).

A. Performance Assessment

A beat-to-beat comparison between reference beat anno-
tation and algorithm output was performed to assess the
performance of the algorithm. The beats were considered to
match if they were within an acceptance interval of 0.03 s. A
learning period of 10 s was applied and the peaks falling in
this period were not compared. The results were displayed in
a confusion matrix. In addition, sensitivity (Se, percentage of
correctly detected beats) and positive predictive value (+P ,
percentage of detected beats that were labeled as such) were
calculated such that:

Se =
TP

TP + FN
(1)

+ P =
TP

TP + FP
, (2)

where TP is the number of true positives, FN the number
of false negatives, and FP the number of false positives.

IV. RESULTS

A total of 15819 beats in the CSL dataset were analyzed
by the algorithms. The line segmentation algorithm (Se =
98.93) was less sensitive than the CSL Reference algorithm
(Se = 99.81) in detecting regular pulses because 131 beats
were mistakenly labeled as artifacts (Table I). This is less
than 0.09% of the analyzed beats. The number of beats
labeled as normal that were artifact beats was reduced by
the line segmentation algorithm to 57% and the number of
beats labeled as normal beats that did not exist was reduced
to 15.7% of the mislabeled beats from the CSL Reference
algorithm (Table II), resulting in significant higher +P for
the segmentation algorithm. The number of missed pulses
(artifact and normal) was very comparable.
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TABLE I
PULSE DETECTION CONFUSION MATRIX OF THE IMS ALGORITHM ON

THE CSL BENCHMARK DATASET

Expert Annotation
+P [%]

Regular Pulse Artifact None

IMS
Algorithm

Regular 14745 453 53 96.68
Artifact 131 317 212
None 29 144 -

Se [%] 98.93

TABLE II
PULSE DETECTION CONFUSION MATRIX OF CSL REFERENCE

ALGORITHM ON THE CSL BENCHMARK DATASET

Expert Annotation
+P [%]

Regular Pulse Artifact None

CSL
Algorithm

Regular 14877 782 336 93.01
Artifact - - -
None 28 132 -

Se [%] 99.81

V. DISCUSSION

We have presented a new algorithm for segmentation of
PPG waveform into pulses and the automatic classification
of artifacts. The IMS algorithm is iterative and can be
easily implemented for real-time applications. It operates in
the time-domain only and can be configured with a single
parameter m which adjusts the segment size. The IMS
algorithm computes faster and is less sensitive to noise with
larger m, but the pulse peak detection is less precise in
temporal space.

A comparison with the CSL Reference algorithm [6]
shows comparable performance in detecting normal pulses
(Table I and II). Since the CSL Reference algorithm was
not designed for labeling artifacts a direct comparison for
this task cannot be made. Whereas the CSL experts only
annotated peaks that were clearly identifiable as such (a
clipped pulse peak would not be marked as peak, but a
pulse with a clipped base was marked), the third expert
was more conservative and marked all artifact zones. As
a result, there were artifact zones with no CSL labeled
peaks or with labeled peaks that are visually regular, but
were too close to an artifact. Consequently, the automated
algorithm detected a significant number of peaks that were
not present in the reference annotation. Since the algorithm
output will be used for further high-level trend processing,
such as respiratory rate extraction, signal quality estimation
and heart rate variability calculation, a conservative artifact
recognition (over-detection of artifacts) is desirable and has
been used in the implementation.

The superiority of the line segmentation algorithm can be
observed in that the majority of the mislabeled peaks (212)
were correctly identified as artifacts. Overall, significantly
fewer FP were obtained (506 vs. 1118). This always comes
with a cost of reducing Se. The reduction of over-detected
regular beats is more desirable than of over-detected artifacts.

Therefore, we will aim to improve the artifact detection in
this direction to further reduce the number of FP.

A limitation of this study was that, despite the large size
of the CSL dataset, it only contained a limited number of
PPG morphologies. For example, only few beats with dicrotic
notches were present. Further benchmarking with a broader
range of datasets that include adult recordings is required.

We are currently working towards a real-time implementa-
tion of the IMS algorithm into the Phone Oximeter platform
[3], which will allow us to assess computational efficiency.
With the Phone Oximeter we aim to provide a mobile, low-
cost monitoring solution for pneumonia and other global
diseases.
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