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Abstract— We present a novel methodology for instantaneous
estimation of quantitative correlates of depth of Anaesthesia
from noninvasive electrocardiographic recordings. The analysis
is based on a point process model of heartbeat dynamics that
allows for continuous tracking of linear and nonlinear HRV
indices, including a novel instantaneous assessment of the Lya-
punov Spectrum by using a cubic autoregressive formulation.
The effective estimation of the model parameters is ensured by
the Laguerre expansion of the Wiener-Volterra kernels along
with the maximum local log-likelihood procedure. We apply the
proposed assessment to experimental recordings from healthy
subjects during propofol anesthesia. The new assessment reveals
novel time-varying complex heartbeat dynamics that under-
lie the quasi-periodic heartbeat fluctuations elicited by the
sympatho-vagal balance. Results suggest that such quantifica-
tion provides important information which is independent from
the standard autonomic assessment and significantly correlated
with loss of consciousness. Further investigation will focus
on evolving our mathematical approach towards a promising
monitoring tool for an accurate, noninvasive assessment of
general anesthesia.

I. INTRODUCTION

Accurate assessment of depth of anesthesia based on
analysis of noninvasive physiological recordings may lead
to important advances in clinical anesthesia monitoring and
patient safety. In particular, analyses of recordings during
anesthesia based on the electrocardiogram (ECG), recorded
in every operating room, have been recently the subject of
research investigation. Focusing on autonomic quantification,
it has been shown that frequency-domain parameters are able
to indirectly assess depth of anesthesia [1]–[4]. Multivariate
point process heart rate variability (HRV) analysis has been
also proposed to track the cardiovascular control dynamics
during anesthesia [5]. All this research is aware of the
still existing significant limitations of ECG-based anesthesia
monitoring, mainly due to confounding effects from neces-
sary compensatory maneuvers and drug administrations, as
well as from the nociceptive stimuli to the central nervous
system occurring during surgery. To this extent, the assess-
ment of the intrinsic higher dimensional heartbeat generation
dynamics (due to the complexity of the sinus node activity
modulation system) may provide important complementary
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information in addition to the measures associated with short
term autonomic control.

It has been shown that the electrical properties of the
human heart undergo many complex transitions as important
quantifiers of complexity of cardiovascular control in normal
and diseased states [6]–[10]. The Lyapunov exponents (LEs)
[11] have been proven to be a useful measure for the charac-
terization of complex dynamics in a nonlinear system. Chon
et.al. [12], and later Armoundas et.al. [13], have suggested
that biological systems such as the one generating heartbeat
dynamics should be considered as both chaotic and stochas-
tic. This concept is in agreement with current physiological
knowledge, since the normal heartbeat is originated by
intrinsic nonlinear mechanisms within the pacemaker cells of
the sinus node, and is modulated at the same time by a high-
dimensional input, i.e. the influence of the autonomic nerves
innervating the sinus node. In this context, we do not address
the issue related on the chaotic behavior of HRV, focusing
instead on the time-varying changes in its complexity by
taking advantage of the ability of our techniques to provide
an instantaneous estimation of the LE spectrum. According
to current literature, we associate negative LE values with
simpler, possibly predominantly linear, HRV dynamics (i.e.
predictability, lower complexity), whether an increasingly
positive LE points at more complex and less stable dynamics
(i.e. unpredictability, higher complexity).

In this work, we propose a novel approach which allows
to track the underlying heartbeat complex dynamics during
anesthesia. This is achieved through the inclusion of the
Fast Orthogonal Search (FOS) algorithm [14] and consequent
LEs estimation [13] within an Inverse-Gaussian (IG) point-
process framework having a cubic autoregressive Wiener-
Volterra representing the IG first order moment. The point
process parametric formulation of the probability function
allows for a systematic, parsimonious estimation of the
parameter vector in a recursive way and at any desired time
resolution. Instantaneous indices, including the instantaneous
dominant Lyapunov exponent (IDLE), can then be derived
from the parameters in order to track both autonomic dy-
namics due to short-term cardiovascular control and the un-
derlying heartbeat complexity modulation during induction
of anesthesia.

II. METHODS

In this section we provide an overview of the methods
that are discussed in greater detail in the companion paper
[15]. Let (0, T ] denote the observation interval, {uj}Jj=1 the
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ordered set of times of the R-wave events recorded in (0, T ],
RRj = uj −uj−1 > 0 the jth R–R interval. We can assume
the probability distribution of the waiting time until the next
R-wave event follows an inverse-Gaussian (IG) model [16]:

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uÑ(t))
3

] 1
2

×

exp

{
−1

2

ξ0(t)[t− uÑ(t) − µRR(t,Ht, ξ(t))]
2

µRR(t,Ht, ξ(t))2(t− uÑ(t))

}
(1)

where Ñ(t) = max{k : uk < t} is a left continuous
function denoting the index of the previous R-wave event
occurred before time t, Ht = (uj , RRj , RRj−1, ...) is the
history of events, ξ(t) is the vector of the time-varing
parameters, ξ0(t) = θ > 0 denotes the shape parameter
of the IG distribution, and µRR(t,Ht, ξ(t)) represents the
first-moment statistic (mean) of the distribution.

Let us consider the Taylor expansion of a generic Nonlin-
ear Autoregressive Model (NAR):

y(n) = F (yn−n, yn−2, ...) = γ0 +
M∑
i=1

γ1(i) y(n− i) +

∞∑
K=1

M∑
i1=1

...
M∑

iK=1

γK(i1, ..., iK)
K∏
j=1

y(n− ij) + ε(n) (2)

where ε(n) are independent, identically distributed Gaussian
random variables. If we represent a nonlinear physiological
system by taking into account up to the cubic nonlinear term,
the NAR system retains an important part of the non-linearity
of the system and gives robustness against the presence of
measurement noise in the data [12].

We use a noiseless version of the NAR framework in (2),
y(n) − ε(n), to model the first moment of the IG distribu-
tion, µRR(t,Ht, ξ(t)). Rather than regressing directly on the
previous R-R interval, we use the Laguerre functions [17]
to expand the kernels and reduce the number of unknown
parameters in (2) that need be estimated. Given the Laguerre
function, φj(n) (see [17]), and the input RRÑ(t), the jth-
order Laguerre filter output is:

li(t) =

Ñ(t)∑
n=1

φi(n)(RRÑ(t)−n −RRÑ(t)−n−1). (3)

The choice of the derivative series improves the achievement
of stationarity within the sliding time window W (here W =
90 s) [18]. By using the Laguerre expansion of the kernels
(NARL model), the instantaneous RR mean becomes:

µRR(t,Ht, ξ(t)) = g0(t) +
P∑
i=0

g1(i, t) li(t)+

Q∑
i=0

Q∑
j=0

g2(i, j, t) li(t) lj(t)+

K∑
i=0

K∑
j=0

K∑
k=0

g3(i, j, k, t) li(t) lj(t)lk(t)

where gk(...) are the regression coefficients of the model.
Given the proposed point process statistical model (1),

the nonlinear indices of the HR and HRV will be de-
fined as time-varying functions of the parameters ξ(t) =
[θ(t), g0(t), g1(0, t), ..., g1(P, t), g2(0, 0, t), ..., g2(Q,Q, t),
g3(0, 0, 0, t), ..., g3(K,K,K, t)]. Concerning the parameter
estimation, a local maximum likelihood method is used to
estimate the unknown time-varying parameter set ξ(t). The
goodness-of-fit of the point process model is based on the
KS test. Autocorrelation plots are also considered to test the
independence of the model-transformed intervals [16]. Using
(3) the NAR representation (2) corresponding to the fitted
NARL model can be easily obtained.

The Lyapunov exponent (LE) of a real valued function
f(t) defined for t > 0 is defined as:

λ = lim sup
t→∞

1

t
log (|f(t)|)

Let us consider a generic n-dimensional linear system in
the form yi = Y (t) pi, where Y (t) is a time-varying
fundamental solution matrix with Y (0) orthogonal, and {pi}
is an orthonormal basis of Rn. Then, the corresponding
λi are straightforward defined. When the sum of the λi is
minimized, the orthonormal basis {pi} is called “normal”
and the λi are called the Lyapunov exponents [19]. One
of the key theoretical tools for determining LEs is the
continuous QR factorization of Y (t) [20], [21]:

Y (t) = Q(t)R(t)

where Q(t) is orthogonal and R(t) is upper triangular with
positive diagonal elements Rii, 1 ≤ i ≤ n, leading to an
easier formulation of the LEs, i.e. [19]–[21]:

λi = lim
t→∞

1

t
log ‖Y (t)pi‖

= lim
t→∞

1

t
log ‖R(t)pi‖ = lim

t→∞

1

t
log ‖Rii(t)‖ .

The NAR model (2) can be rewritten in an M -dimensional
state space canonical representation:

r(k)n =

{
r
(k+1)
n−1 if k < M

F
(
r
(M)
n−1, r

(M−1)
n−1 , · · · , r(2)n−1, r

(1)
n−1

)
if k = M

By evaluating the Jacobian J(n) over the time series, the LE
can be determined using the QR decomposition:

J(n)Q(n−1) = Q(n)R(n)

This decomposition is unique except in the case of zero
diagonal elements. Then the LEs λi are given by

λi =
1

τH

H−1∑
j=0

lnR(j)ii

where H is the available number of matrices within the local
likelihood window of duration W , and τ the sampling time
step. The estimation of the LEs is performed at each time t
from the corresponding time-varying vector of parameters,
ξ(t). This provides us with a time-varying vector, λi(t),
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TABLE I
SPEARMAN CORRELATION COEFFICIENT ρsp DURING LOSS OF

CONSCIOUSNESS

ρsp µRR σRR LF HF LF/HF IDLE
σRR 0.2825 1 0.6689 0.7721 0.0177 -0.0233

LF/HF -0.1699 0.0177 0.5702 -0.4330 1 -0.5550
IDLE 0.1776 -0.0233 -0.2022 0.3676 -0.5550 1

able to track the Lyapunov spectrum in continuous time. We
set forth the first LE, λ1(t), as the instantaneous dominant
Lyapunov exponent (IDLE).

III. EXPERIMENTAL RESULTS

In order to validate the proposed algorithms’ ability to
track pharmacological interventions in the OR or ICU, we
have considered experimental RR datasets from healthy
volunteer subjects participating in a study approved by the
Massachusetts General Hospital (MGH). Intravenous and
arterial lines were placed in each subject. Propofol was
infused intravenously using a previously validated computer-
controlled delivery system running STANPUMP connected
to a Harvard 22 syringe pump (Harvard Apparatus, Holliston,
MA). Five effect-site target levels (L1 to L5, step Propofol
concentration increase of 5 mcg/ml) were each maintained
for 15 minutes respectively, and then step-wise decreased by
5 mcg/ml per epoch during E6, E7 and E8 before full emer-
gence from anesthesia. Along the experiment, subjects listen
to pre-recorded auditory stimuli and are instructed to press
a button to differentiate between sounds. We use the loss of
button responses as a marker of loss of consciousness (LOC).
Capnography, pulse oximetry, ECG, and arterial BP were
recorded and monitored continuously throughout the study.
Bag-mask ventilation with 30% oxygen was administered
as needed in the event of propofol-induced apnea. Because
propofol is a potent peripheral vasodilator, phenylephrine
was administered intravenously to maintain mean arterial BP
within 20% of baseline.

To provide evidence of the potentialities of our quantifica-
tion we show an exemplary application of the algorithm to
a representative subject. This patient is losing his capacity
to respond to auditory stimuli at the beginning of L2, and
regains response capacity during the first propofol reduction
step (E6). At the beginning of LOC bag-mask ventilation
is started, and phenylephrine is administered with varying
dosage increases all along LOC, particularly during L4 to E6.
The computed HRV linear and nonlinear indices of heartbeat
dynamics are shown in Fig 1. In particular, the HF power
mirrors the sharp increase in instantaneous RR variability
(correlation 0.66, Table I) especially when the subject starts
losing his ability to respond to auditory stimuli in L2.
Here the concurrent start of artificial ventilation may play a
significant role, as the HF power index measures respiratory-
related heartbeat variations (respiratory sinus arrhythmia).
Importantly, these two indices significantly decrease in L4
and tend to return to baseline values in L5 and E6, thus
loosing their correlation with both propofol administration

Fig. 1. Instantaneous heartbeat statistics computed from a representative
subject using a cubic NARL model. High resolution dynamics (blue)
are superimposed by moving averages (red). Below each index is its
corresponding statistics per epoch (median and standard deviation).

and loss of consciousness. In this case the autonomic assess-
ment is likely being affected by the synpathomimetic action
of phenylephrine administration. The index most correlated
with propofol administration is the LF/HF sympatho-vagal
index, confirming previous findings. On the other hand, the
IDLE index maintains a consistent fluctuating trend around
higher positive values all along the epochs associated with
loss of response, going back to baseline values coincidently
with recovery of consciousness (in E6), and then becoming
negative with sympathetic predominance during emergence
from anesthesia. Of note, the IDLE index is highly uncorre-
lated with RR mean (0.18) and variability (-0.02) and only
partially correlated with LF/HF (-0.55). IDLE and LF/HF
are the two indices with highest significant difference of the
epochs during LOC from baseline (see Table II). In fact,
σRR and HF show a non-significative difference in L5 and,
likewise, LF in L4. Moreover, LF/HF changes significantly
between baseline and L1 (where the subject is still respond-
ing), whereas the IDLE maintains comparable values during
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TABLE II
P-VALUES FROM THE RANK-SUM TEST BETWEEN L0 AND THE OTHER PROTOCOL EPOCHS

L1 L2 L3 L4 L5 E6 E7 E8 EM
Loss of Consciousness

µRR 0.536 1.81·10−5 1.10·10−5 1.80·10−7 3.70·10−7 0.956 1.13·10−9 1.41·10−8 1.65·10−9

σRR 9.00·10−7 4.38·10−9 1.68·10−12 2.60·10−9 0.985 0.0304 6.52·10−11 2.60·10−9 0.267
LF 5.30·10−4 1.04·10−4 0.0277 0.481 8.90·10−5 0.0252 0.802 0.318 9.25·10−6

HF 0.0614 2.37·10−10 1.41·10−12 3.10·10−12 0.690 0.0229 2.39·10−12 2.61·10−12 1.05·10−8

LF/HF 0.0343 2.02·10−5 5.89·10−9 1.47·10−10 0.00103 0.898 2.85·10−8 2.80·10−9 1.87·10−10

IDLE 0.4289 1.70·10−4 1.23·10−6 4.04·10−8 9.90·10−4 0.536 1.23·10−3 1.47·10−4 5.60·10−5

Bold values indicate significative differences with α <= 0.05

these two epochs, confirming its more exclusive classification
power between conscious and unconscious states.

IV. DISCUSSION AND CONCLUSION

We present a novel methodology for the characteriza-
tion of heartbeat nonlinear dynamics and their time-varying
complexity by means of the instantaneous estimation of
the Lyapunov Spectrum within a point process paradigm.
The use of the discrete Laguerre expansions of a cubic
autoregressive Wiener-Volterra model gives several advan-
tages such as long-term memory and lowest complexity to
the considered nonlinear system, allowing for estimation of
the instantaneous dominant Lyapunov exponent (IDLE). The
presented results demonstrate that our proposed point process
model is able to track the autonomic-mediated short-term
cardiovascular control dynamics and to characterize at the
same time the inherent nonlinearity of the system. The single
case study presented here demonstrates that the IDLE is
independent from sympathovagal dynamics as assessed by
more standard autonomic indices, and strongly associated
with loss of consiousness during anesthesia. Our results
suggest that the changes in autonomic tone during anesthesia
are paralleled by a more preponderant presence of complex
nonlinear heartbeat dynamics, which is strongly correlated
with the unconscious state. Given the strong mathematical
foundation of our model along with these promising find-
ings, future works are devoted on better understanding the
physiological meaning of these indices, their dependence on
confounding effects from compensatory maneuvers and/or
nociceptive stimuli, and their relations with central brain
mechanisms as they are affected by anesthetic drugs.
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