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Abstract— Muscle activity detection is important for clinical
investigations leading to the identification of neuromuscular
disorders. Myoelectric signal recorded via electrodes placed at
skin surface can reveal important muscle excitation information
about underlying limb movement. However, a primary difficulty
in the detection of muscle activity period from myoelectric sig-
nals lies in the inherent variability of these signals and the noise
added during the collection process. In the literature, the double
threshold detector has been commonly used for detection of the
muscle activity periods from myoelectric signals. In this study,
we propose a new scheme based on the log-likelihood ratio
test to detect muscle activity periods accurately. This scheme
uses energy information contained in the myoelectric signal,
which increases with the start of the activity. We demonstrate
the viability of energy detection scheme via successful detection
performed on synthetic as well as clinical myoelectric signals.

I. INTRODUCTION

Detection of muscle activity from myoelectric signals

is important for clinical studies that attempt to diagnose

neuromuscular deficiencies such as caused by stroke and

Parkinson’s disease. These applications require an accurate

detection of the onset, offset, and duration of the EMG

(Electromyographic) burst while the patient performs a pre-

determined task. Activity periods of the muscles are usually

determined by experts based on the observation of processed

(rectified and low pass filtered) EMG signals. However, due

to the variability of results from human experts for this

task, computer algorithms have also been proposed in the

literature. For example, Di Fabio used a 50 sample window

of the rectified and low-pass filtered EMG signal to make

a baseline reference; the muscle was considered ON if 25

consecutive samples exceeded three standard deviations (σ)

of the mean baseline activity [1]. Lidierth proposed a similar

detection method with extended post-processing to improve

detection results [2]. Hodges and Bui also extended the same

algorithm [1] and compared different window sizes, low pass

filter frequencies and standard deviations (σ) above base line

to decide upon the value of the threshold [3]. Abbnik et al.

extended the work of [3] with a change of cut-off frequency

and window length [4].

All such algorithms [1], [2], [3], [4] can be classified as

more of a heuristic nature, as detection is based upon defining

a baseline followed by muscle activity detection using var-

ious thresholds. Bonato et al. proposed a statistical method

based on selection of two thresholds, called the double
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threshold method which has become popular [5]. In Bonato’s

method, EMG signals were whitened (de-correlated) before

application of the detection algorithm, yet methods of de-

correlating EMG signal were not discussed. Researcher have

proposed improvements to the double threshold method.

For example, Generalized Likelihood Ratio (GLR) test was

proposed by Micera et al. [6]. Staude extended the statistical

methods to include other optimal change detection algo-

rithms based on CUSUM-type (cumulative sum) and AGLR

(approximated generalized likelihood ratio)[7]. Algorithms

proposed by Ref. [6], [7] are complicated in their implemen-

tation, yet method of Ref. [7] successfully provides on-line

detection capability. Recognizing the non-stationary nature

of EMG signal, wavelet transforms have also been used by

some authors for detecting muscle activity [8], [9], but these

methods also suffer from implementation complexity. Solnik

et al. [10] used Teager-Kaiser Operator as additional signal

conditioning to improve the detection accuracy using the

algorithms proposed by [5], [7].

In the following, we propose an efficient detection scheme

based on Neyman-Pearson formulation of the energy detec-

tors for stochastic signal buried in noise. This formulation

uses the log-likelihood ratio test to develop a test statistic.

The test statistic is then compared to a threshold for deciding

on/off timings of the muscle activity and then marking

activity periods. Results from synthetic as well as clinical

EMG signal are presented to validate the proposed scheme.

II. ENERGY DETECTOR

Neyman-Pearson type energy detectors exploit energy

information in the signal to detect the presence of the desired

signal. Test statistic, which represents energy of the signal, is

developed through hypothesis testing using the log-likelihood

ratio test [11].

A. Mathematical formulation

Considering N samples of the noisy signal x[n] : n =
0, 1, 2, . . . , N − 1 as a zero-mean Gaussian process s[n] ∈
N (0, σ2

s) corrupted by an independent zero-mean Gaussian

additive noise, w[n] ∈ N (0, σ2
n), the detection scheme is to

distinguish between the hypothesis:

H0 : x[n] = w[n],

H1 : x[n] = s[n] + w[n].
(1)

Neyman-Pearson detector decides H1 if the likelihood ratio

exceeds a threshold γ,

L(x) =
p(x : H1)

p(x : H0)
> γ, (2)
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where p(x : H0) and p(x : H1) are the probability density

functions (PDFs) of the recorded EMG signal under hypoth-

esis H0 and H1. These PDFs are given as,

H0 : x[n] ∈ N (0, σ2
n),

H1 : x[n] ∈ N (0, σ2
n + σ2

s).
(3)

By substitution of PDFs from (3) in (2), we get

L(x) =
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Solving for the log-likelihood ratio, i.e., l(x) = ln(L(x)),
we get,
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(6)

We can solve (6) for some function of observed data x[n],

i.e,
N−1
∑

n=0
x2[n] as:

N−1
∑

n=0

x2[n] = f(σ2
n, σ

2
s , N). (7)

The term appearing on the right hand side of (7) can be

termed as test statistic T (x) for observed data x[n]. We define

our test statistic as:

T (x) =

N−1
∑

n=0

x2[n]. (8)

The Neyman-Pearson detector decides H1 if T (x) > γ́,

where γ́ is a threshold, which is computed using probability

of false alarm Pfa. We note that the test statistic computes

energy in the recorded signal and compares it to the threshold

γ́ to decide about muscle activity onset, and is therefore

named the energy detector.

To formulate the test statistic, T (x) which follows χ2

distribution of N degree of freedom (DOF), we have σ2
n

and (σ2
n + σ2

s ) as the variance of the observed signal under

H0 and H1 hypothesis.

H0 :
T (x)

σ2
n

∈ χ2
N ,

H1 :
T (x)

σ2
n + σ2

s

∈ χ2
N .

(9)

Defining the right tail probability of a χ2
N random variable

as [11],

Qχ2

N

(x) =

∞
∫

x

p(t)dt. (10)

Equation (10) allows us to write Pfa as:

Pfa = Pr[T (x) > γ́|H0] = Pr

[

T (x)

σ2
n

>
γ́

σ2
n

|H0

]

= Qχ2

N

(

γ́

σ2
n

)

.

(11)

Upon availability of estimate of σ2
n, we can use (11) to

calculate the value of γ́ as given below:

γ́ = σ2
nQ

−1
χ2

N

(Pfa). (12)

Once Pfa is fixed, (12) is used to calculate the value of the

threshold γ́. Also, for probability of detection (Pd), we have,

Pd = Pr[T (x) > γ́|H1]

= Pr

[

T (x)
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n + σ2

s

>
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σ2
n + σ2

s

|H1

]

Pd = Qχ2

N

(

γ́

σ2
n + σ2

s

)

.

(13)

Defining signal to noise ratio (SNR) as,

SNR = 10 log10

(

σ2
s

σ2
n

)

. (14)

Now, we can write Pd in terms of Pfa using (12), (13) and

(14):

Pd = Qχ2

N

(

γ́

(σ2
n + σ2

s)

)

= Qχ2

N
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10

)

.

(15)

Equation (15) provides relation between Pfa and Pd in terms

of SNR of the signal. We will use this relation to present the

performance analysis of the energy detector.

We summarize the algorithm for the energy detection

scheme:

1) First N samples from recorded EMG signal are se-

lected to form a window. All samples in the window

are whitened using a pre-whitening filter and a test

statistic (8) is formed.

2) Samples from the recorded EMG signal are selected to

estimate variance of the noise, i.e., σ2
n. These are the

samples where muscle activity has not yet started, i.e.,

the recorded signal contains noise only.

3) The threshold γ́ is calculated using Pfa from (12).

4) Test statistic T (x) is compared with the threshold γ́

to mark muscle activity periods; for T (x) ≥ γ́, the

starting time of the window is marked as starting time

for muscle activity, otherwise window is advanced by

one sample.

5) Post-processing is applied to remove spurious activi-

ties.
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Fig. 1. ROC curves for different DOFs of χ2 at a fixed SNR=5. More
DOFs result in better detection for lower Pfa
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Fig. 2. ROC curves for different SNR values at DOF=2. Better signal SNR
results in better detection for lower Pfa

B. Performance analysis

We present ROC (Receiver Operator Characteristic) curves

using (15) to gain an insight into the performance of the

energy detector. Once SNR has been estimated (in the case

of observed signal) or fixed (in the case of synthetic EMG

signal), we can then draw these curves for range of values

of Pd against Pfa. ROC curves provide an insight into the

detection scheme and highlight the limitations, i.e., trade-

off associated with the detection scheme. Fig. 1 shows

the effect of increasing number of samples considered for

making decision on the detection. These number of samples

are the DOF of the χ2 distribution. As the number of

samples (DOF of χ2 distribution) are increased, we get a

higher Pd at lower Pfa. Fig. 2 shows the effect of SNR on

detection; higher SNR values results in better detection at

lower Pfa . Moreover, it is evident from Fig. 1 and 2 and

that we have limitations on reducing the Pfa, as Pd also

decreases, meaning that we will have greater probability of

miss (Pmiss = 1 − Pfa). Therefore, we cannot reduce Pfa

arbitrarily.

C. EMG signal pre-whitening

A pre-whitening filter based on [7] with the extension of

statistical procedure using the Ljung-Box Q-test, is proposed

here for the selection of the filter model order. The filter is

based upon the idea of fitting autoregressive (AR) model to

the recorded EMG signal and then using these AR parameters
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Fig. 3. Detection result on a synthetic EMG signal at different SNR levels.

as moving average (MA) filter coefficients. This procedure

can be summarized as follows:

1) Estimate AR parameters by fitting EMG signal to the

AR model.

2) Perform the Q-test on residues, that will either fail

to reject the null hypothesis, establishing the fact that

residuals are un-correlated, or otherwise.

3) In case Q-test rejects the null hypothesis, increase the

filter order, i.e, AR model order by one and again

perform the Q-test.

4) We observe that in most of the clinical EMG signals,

we fail to reject the null hypothesis at AR model order

of p = 30 ∼ 40.

III. DETECTION RESULTS

We present detection results of proposed scheme on syn-

thetic as well as clinical EMG signals. Before application of

the proposed algorithm to the EMG signals, it is important

to establish some statistical parameters based on synthetic

EMG signals, which may effect the detection results.

A. Detection of synthetic EMG signal

1) Effect of SNR on detection: SNR of the recorded

EMG signal influences the performance of the proposed

detector. In clinical EMG signals, SNR can be increased

by adopting recommended skin preparation and recording

procedures. However, to ascertain the performance of energy

detector at different SNR levels, it is essential to generate

synthetic EMG signals with known SNR values. Multiple

realizations of synthetic EMG signal were generated for

testing the proposed detection scheme [5]. In Fig. 3, we

present detection results on three synthetic EMG signal

generated at SNR=15, 5 and 3 with same detection scheme

parameters for all three signals as DOF=10 and Pfa = 0.01.

Each synthetic EMG signal contained three activity periods

(epochs). The bottom of the Fig. 3 shows that the detection

scheme has one Type-I error (false alarm) between 1500 and

2000 samples due to high noise level in the synthetic signal.

In such case, reduction in Pfa is proposed.
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Fig. 4. Detailed view of the effect of different DOFs at the detection of
the muscle activity onset.

2) Effect of window size (DOFs) on detection: The pro-

posed algorithm uses a window of EMG samples for making

the test statistic T (x), which is also referred to as DOF of

the χ2 distribution. Here, we present the effect of changing

DOFs (meaning that we are changing the number of samples

selected for making the detection decision) on detection

at SNR=10 in Fig 4. Increasing number of DOFs makes

detector more sensitive to changes in EMG signal at any

specified SNR level. This is due to the threshold γ́, which is

dependent on the DOFs of the χ2 distribution (eq. (12)).

B. EMG data collection

The study received prior approval from Institutional Re-

view Board (IRB) of University of Arkansas at Little Rock

(UALR). A Noraxon (Noraxon USA, Inc., Scottsdale, AZ)

TeleMyo DTS Wireless EMG system was used to record

EMG data via the Vicon Nexus 1.7.1 system at sampling

rate of 1500 / 3000 Hz. Bipolar, disposable, pre-gelled

Ag/AgCl electrodes (dual electrodes with 20 mm inter-

electrode distance) were placed on participant’s muscle belly.

Skin preparation, and all related precautions for recording of

EMG data were taken.

C. Detection of clinical EMG signals

Clinical EMG signals recorded from different muscles

were used to ascertain the validity of the proposed detection

scheme. Fig. 5 presents a typical case of muscle activity

onset detection at Pfa = 0.01 and DOF=10 on two different

muscles, i.e., muscle gastrocnemius and tibialis anterior.

Figure 5, bottom (tibialis anterior) has relatively high SNR

and therefore, the proposed detector is able to identify muscle

activity accurately as compared with the gastrocnemius (top

figure), establishing the fact that better SNR leads to more

accurate detection results.

IV. CONCLUSION

A new and efficient energy detector for precise detection

of muscle activity periods from EMG signal was presented,

called the energy detector. The proposed detection scheme

exploits the energy information in the myoelectric signal to

detect the presence of muscle activity periods. This scheme

is robust and efficient for stochastic signals buried in noise

(such as the EMG signal). Application of algorithm is

computationally less expensive than the double threshold

detector and the proposed method can be used to detect
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Fig. 5. Detection result for clinical EMG signal recorded from a) top,
gastrocnemius muscle; b) bottom, tibialis anterior muscle.

muscle activation periods in clinical applications. Detection

examples for synthetic and clinical EMG signals were also

presented.
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