



Abstract— In this paper, we present the implementation of a

Multigrid ODE solver in SOFA framework. By combining the

stability advantage of coarse meshes and the transient detail

preserving virtue of fine meshes, Multigrid ODE solver

computes more efficiently than classic ODE solvers based on a

single level discretization. With the ever wider adoption of the

SOFA framework in many surgical simulation projects,

introducing this Multigrid ODE solver into SOFA’s pool of

ODE solvers shall benefit the entire community. This

contribution potentially has broad ramifications in the surgical

simulation research community, given that in a single-resolution

system, a constitutively realistic interactive tissue response,

which presupposes large elements, is in direct conflict with the

need to represent clinically relevant critical tissues in the

simulation, which are typically be comprised of small elements.

I. INTRODUCTION

The broad objective of medical simulation is to exploit

computers in order to synthesize the tissue response to a

simulated therapy. More specifically, surgery simulation

synthesizes tissue response to simulated surgical tools, such as

a mechanical response to virtual cutting or manipulation. The

simulated tissue behavior is a trade-off between material

fidelity and computational efficiency, which can be thought of

as a spectrum. The first pole of this spectrum coincides with

predictive simulation, which consists of highly accurate

off-line computations used by expert surgeons. The opposite

pole can be termed interactive simulation, and offers a means

of training surgical residents, in order to improve their skill

without risk to a real patient, by way of a haptic device.

Increasingly, the research community has sought to bridge the

conflicting requirements inherent in the two poles, leading to

the development of new efficiencies. These efficiencies are

based on either hardware acceleration, typically graphical

processor units (GPUs) [1], or on novel algorithms, such as

constitutively and geometrically nonlinear elasticity models

that leverage preprocessing based on reference coordinates:

the Total Lagrangian Explicit Dynamics (TLED) [2] and

Multiplicative Jacobian Energy Decomposition (MJED) [3].

The development of the Simulation Open Framework

Architecture (SOFA) [4] for Medical Simulation has not only

greatly enhanced the research community’s ability to develop

new algorithms more quickly, but also serves as as an efficient

1: X. Wu is currently employed at SAS, Cary, NC. His email address is

xunlei.wu@sas.com.
2: J. Yao is currently employed at RAD&IS at NIH. His email address is

jyao@cc.nih.gov.
3: A. Enquobahrie and H.P. Lee are employed by Kitware,. Their email

addresses are andinet.enqu@kitware.com and huaiping.lee@kitware.com.
4: M.A. Audette is with the Dept. of Modeling, Simulation and

Visualization Engineering, Old Dominion University, Norfolk, VA, 23529.

prototyping tool [5]. SOFA has included a handful of ODE

solvers already, such as explicit Runge-Kutta, and implicit

Euler, to name two. All of these solvers can process complex

couplings of objects each modeled with a single and different

discretization, however none of them is able to exploit

multiple resolutions of the same object. Despite the modular

and multi-modality mapping features in SOFA which can

improve visual detail by pairing a fine-resolution visual model

with a coarse mechanical model, single-level based explicit or

implicit ODE solvers simply cannot retain the integration

stability and transient dynamic details at the same time.

A Multigrid ODE solver [6] has been proposed to accelerate

the time integration of tissue deformation with interactive

medical simulation application in focus. By combining the

stability advantage of coarse meshes and the transient

detail-preserving virtue of fine meshes, the Multigrid ODE

solver provides more efficient computation than classic ODE

solvers coupled with a single mesh representation. This paper

describes the implementation details of such Multigrid ODE

solver (MultiGridSolver) into the current SOFA public

release, as well as several enhancements over the original

solver proposed in [6].

II. METHODOLOGY

A. Broad Objective: a SOFA Multigrid ODE Solver class

Our goal is to realize a MultiGridSolver in SOFA as an

ODE solver class. This implementation is consistent with the

architecture of SOFA, which exploits separate models

representing the deformable anatomy, which are specialized

for the following aspects of the simulation:

 Visualization: typically a relatively dense triangular

surface model.

 Continuum mechanics: usually a tetrahedral mesh

model that is coarser than the visualization model.

 Collision detection: a number of schemes are suppor-

ted, including a representation of an organ in terms of

coarse spheres or a coarsely triangulated surface.

In current modular design of SOFA, an ODE solver accesses

MechanicalState (container of state vectors) of the associated

MechanicalObject at the current time stamp, aggregates all the

forces applied to the deformable object, and then evolves the

state to the next time stamp. It is important to understand that

all existing SOFA’s ODE solvers do not compute the forces,

e.g. collision forces, body forces. They merely aggregate them

as already computed by other Visitor instances invoked in the

animation loop. Before demonstrating our implementation, we

present background information to facilitate the understanding

Integration of a Multigrid ODE Solver into an Open Medical

Simulation Framework

Xunlei Wu
1
, Jianhua Yao

2
, Andinet Enquobahrie

3
, Huai-Ping Lee

3
, and Michel A. Audette

4

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

3090978-1-4577-1787-1/12/$26.00 ©2012 IEEE

of the differences between MultiGridSolver and existing

single-level SOFA ODE solvers.

B. MultiGridSolver’s V-cycle

In constrast to single-level solvers included in SOFA,

MultiGridSolver needs to access the states of several

MechanicalObject instances. These MechanicalObjects,

whose discrete mesh representations have different resolutions,

are arranged in a sorted fashion. MechanicalObject
(0)

 at level 0

represents the finest mesh whereas MechanicalObject
(M-1)

 has

the coarsest mesh for an M-level MultiGridSolver scheme.

MechanicalObject
(0)

 is used to change the appearance of the

deformable anatomy’s corresponding VisualModel and to

respond to the anatomy’s CollisionModel. The Multigrid

solver passes information among multiple discretizations in a

V-cycle fashion demonstrated in the right half of Figure 1.

Figure 1. Multigrid ODE Solver’s RSV V-cycle in SOFA animation loop

When integrating Xn
(0)

, MechanicalState of

MechanicalObject
(0)

, from time stamp n to n+1, the

displacement information in Xn
(0)

 and both the external and

induced internal forces will propagate to and from the coarser

levels, i.e. MechanicalObject
(i)

 where [].

MultiGridSolver‘s Restrict-State-and-Variation (RSV)

scheme is chosen here to be implemented into SOFA due to

its stability and convergence performance in comparison with

a number of competing approaches [6].

In the beginning of each RSV V-cycle, MultiGridSolver first

maps the state Xn
(i-1)

 of each degree-of-freedom (DOF) of

MechanicalObject
(i-1)

to the next coarser level’s state Xn
(i)

 by

either restricting Xn
(i-1)

directly or updating Xn
(i)

 with the

restricted version of Vn
(i-1)

 Xn
(i-1)

 – Xn-1
(i-1)

 , the variation

of the corresponding DOF at time stamp n and level i-1.

Please refer to [6] for the details on the switching between

state mapping and variation mapping. Once the coarsest level

is reached, Xn
(M-1)

can be thought as the restricted version of

Xn
(0)

. RSV then computes and aggregates the forces on Xn
(i)

before ODE integration to time stamp n+1.

The second stage of the RSV scheme interpolates the coarse

mesh state to fine meshes. In a manner similar to the

restriction switching mechanism, each DOF’s Xn
(i-1)

is either

an interpolation of Xn+1
(i)

 or updated with the interpolation of

Vn+1
(i)

. Finally Xn
(0)

 becomes the interpolated version of

Xn+1
(M-1)

 and is integrated to Xn+1
(0)

 by the end of each

MultiGridSolver loop. Apart from the standard interface of

existing SOFA ODE solver class, every V-cycle requires 3

more components:

1. The state at both time stamps n and n-1 of a series of

MechanicalObject
(i)

.

2. The mapping between adjacent-level Mechanical-

Object meshes.

3. The capability to trigger the computation of external

forces, e.g. penalty forces, due to collision at every level.

The remaining subsections will illustrate how our implemen-

tation incorporates the above extra information into SOFA.

C. Accessing multiple MechanicalObject states

In our implementation, MultiGridSolver embeds several

SOFA Node’s. Each Node contains a Mechani- calObject as

well as MeshLoader, MeshTopology, FEMForceField,

UniformMass, ODESolver, and elements needed by

CollisionPipeline. Then MechanicalObject
(0)

 and

CollisionPipeline
(0)

 are referenced in the main SOFA tree,

which also contains the deformable object’s visual model,

e.g. OglModel, and of course, the ODESolver, i.e.

MultiGridSolver . Figure 2 illustrates the multiple Node

instances embedded in MultiGridSolver as well as the

references of top level of MechanicalObject and

CollisionPipeline in the SOFA main tree. At every step,

SOFA’s main animation visitor will invoke

MultiGridSolver::solve(), where the sequential restriction

and interpolation will be invoked. Since each Node in

MultiGridSolver contains ODESolver as well, the time

integration of each MechanicalObject
(i)

 will be performed in

MultiGridSolver::solve() as well.

D. Mapping adjacent meshes

The meshes of MechanicalObject
(i)

 and Mechani-

calObject
(i-1)

 are mapped with each other through SOFA’s

MeshBarycentricMapperEngine during the initialization of

MultiGridSolver, i.e. Multi- GridSolver::init(). Such mapping

associates every vertex’s displacement on one mesh to a

weighted sum of all the corner vertices’ displacement of an

element in another mesh during MultiGridSolver V-cycle.

Since the mapping has to be performed before the SOFA

main animation loop starts, after each MultiGridSolver Node

and its child objects are instantiated, Node::init() has to be

called before calling MultiGridSolver:: init(). This approach

is unconventional with respect to existing SOFA applications

where init() method of all instantiated Nodes and child objects

are invoked implicitly through the root Node’s init() by the

end of main function. This is because all the objects in the

existing SOFA applications can be traversed from the main

tree and there is no cross-node coupling.

E. Resolving contacts within MultiGridSolver

The contact resolution requirement has proved to be the

most difficult to resolve in the current SOFA architecture. A

SOFA ODE Solver’s solve() method only aggregates the

already computed modular forces. The collision detection and

3091

the induced collision forces have been calculated by

CollisionPipeline visitor prior to an ODE solver’s solve()

being called. Secondly, in the ascending portion of

MultiGridSolver V-cycle, once Xn
(i-1)

 is updated given Xn+1
(i)

and Vn+1
(i)

, the contact between Mechanical- Object
(i-1)

 and

the rest of the contact bodies in a SOFA simulation has to be

resolved. Users have to develop a custom AnimationLoop in

order to support such interaction within an ODE solver class

in the current SOFA release. The main idea behind our

approach is to carefully arrange all the objects both in the

main simulation tree and each Node embedded in

MultiGridSolver illustrated in Figure 2.

Fundamentally, Node
(i)

 has to contain objects embodying a

collision pipeline in addition to objects describing a

deformable object. Also, the references of other objects’

collision models in the SOFA scene have to be registered in

Node
(i)

. Recall that Node
(i)

 has its own (standard) ODE solver,

e.g. (ex/implicit) Euler solver. The main simulation tree

copies the same tree structure as Node
(0)

 of MultiGridSolver

except that the reference to ODESolver is replaced by an

instance of Multi- GridSolver class. Note that the objects

instantiated within MultiGridSolver child nodes are not

duplicated but rather referenced. By customizing MultiGrid-

Solver::solve() and accessing CollisionPipeline
(i)

, Node
(i)

 can

now perform collision detection against current mechanical

states, aggregate the collision response and other forces, and

launch that level's

Figure 2. Multigrid ODE Solver based simulation application diagram.

ODESolver::solve() in order to update the state to the next

time stamp. The advantages of this approach are that it offers

the least intrusion into existing SOFA architecture and the

most flexible. One disadvantage of this setup is one extra

collision detection performed in the main animation loop

before MultiGridSolver::solve() is invoked.

F. Improvements over the original Multigrid algorithm

Along with our implementation based on SOFA, we have

 improved the original Multigrid solver in several areas:

1. Selecting different ODE solvers for different levels - The

original Multigrid ODE solver deployed the same ODE

solver at every level, e.g. explicit Euler. Despite its

simplicity, it was less flexible to be customized. In the

implementation presented in this paper, each level can

have different ODE solvers. One example is applying

explicit Euler from level 0 to M-2 and implicit Euler at

the coarsest level M-1. While the coarsest level achieves

unconditional stability, the explicit methods in fine levels

improve the transient details of the deformation.

2. Applying different time steps for different levels - In the

original algorithm, an M level MultiGridSolver with step

size t yields every level’s ODESolver to have equal step

size t/M. In conjunction with the previous improvement,

the user now can assign arbitrary distributions of step

sizes to different levels provided the partition of unity of

these distribution factors. As an example, define N
(i)

 as

the count of elements at level i. Assuming every level

uses a uniform mesh, the higher the count of elements,

the smaller the elements get, and thus smaller step size is

needed for the stability of an explicit ODE solver. The

step size at level i is

∑()
 (1)

The user can certainly deploy more elaborated measure

of element size and stiffness than this naïve approach to

control the step size distributions. In general, the finer

mesh gets a smaller step size. If ODESolver
(M-1)

 is

implicit, the user can assign bigger portion of t to the

coarsest level to further improve the stability of the

hybrid MultiGridSolver who combines both explicit

solvers on fine levels and implicit solvers on the coarsest

level. Certainly this approach would reduce the transient

details captured.

III. RESULTS
We have tested our 4-level MultiGridSolver against a

single level ODE solver in SOFA public release 1.0 beta4 on

an Intel Core i7-2720QM laptop in Debug mode. Figure 3 is a

screenshot of the application running in SOFA GUI where

OglModel and CollisionModel are triangular mesh of a ball.

The surface mesh is mapped to MechanicalObject who is

based on multiple tetrahedron meshes of the same cube

geometry. The ball drops under gravity and collides with

bowl-shaped fixed floor.

The reference case applies a single level ODE solver on the

finest mesh used by MultiGridSolver. The performance

results are summarized in Table 1 and 2. When using

MultiGridSolver as a pure explicit ODE solver, it is more

efficient than single level based ODE solver. MultiGridSolver

uses 50% amount of time of its single- level explicit Euler

brother to simulate the scene to the same length of time.

Although the hybrid version of MultiGridSolver cannot

compete with single-level implicit Euler in terms of stability,

it takes 50% less amount of time to finish each solve() call. In

addition, the hybrid MultiGridSolver introduces less artificial

damping as well because of the fine level’s explicit ODE

solvers. In the example recorded in Table 2, 50% of the total

portion of time step assigned to level 0 to 2 computed from

eq. (1) has been assigned to level 3. Namely, the coarsest

level’s implicit Euler solver simulates a step size of 17ms

while level 0 to 2 explicit Euler solvers simulate a total step

size of 6ms. By applying 17ms step size to Single-level

3092

ODESolver case with implicit Euler, it will need

(1000/17)(1/3.5)=16.807sec CPU time to finish 1sec of the

simulated scene with comparable amount of artificial

damping than the hybrid MultiGridSolver counterpart.

Figure 3. MultiGridSolver based simulation in SOFA.

 MultiGridSolver Single-level

ODESolver

Total Element Count 2570+1428+950+529=

5477

2570

Fine Level

ODESolver

Explicit Euler Explicit Euler

Coarsest Level

ODESolver

Explicit Euler N/A

Maximum Stable

Step Size

5ms 1ms

Average FPS 14 34

CPU Time to
simulate 1 second

(1000/5)(1/14)=14.286
sec

(1000/1)(1/34)=29.41
2 sec

Table 1. Explicit MultiGridSolver performance

 MultiGridSolver Single-level
ODESolver

Total Element
Count

2570+1428+950+529=
5477

2570

Fine Level
ODESolver

Explicit Euler Implicit Euler

Coarsest Level
ODESolver

Implicit Euler N/A

Maximum Stable

Step Size

23ms Any

Average FPS 7 3.5

CPU Time to
simulate 1 second

(1000/23)(1/7)=6.211
sec

(1000/1000)(1/3.5)=0.
286 sec

Table 2. Hybrid MultiGridSolver performance

IV. DISCUSSION AND FUTURE WORK

This paper has presented work on the integration of a

Multigrid ODE solver into the open-source platform. Our

results represent a proof-of-concept of the feasibility of

representing an object at different resolutions and using these

various levels to collaboratively and stably estimate

deformations, within the open-source SOFA platform.

The recasting of surgery simulation, in terms of deformations

applied to anatomical models of progressively finer

resolution and smaller spatial extent, coinciding with the

pathology, the surgical corridor to it, and neighboring

critical tissues, will have profound impact on the simulation

community. This approach is consistent surgical ontologies

based on neurosurgical approach and pathology type, which

naturally leads to smaller subvolumes of clinical interest,

coinciding with medium- and fine-resolution meshes. Last,

this approach leads to multi-GPU massive parallelization.

Last, our MultiGridSolver implementation integrates multiple

MechanicalObjects during its setup. Since this is different

from standard SOFA ODE Solver class interface,

MultiGridSolver is not compatible with the current SOFA

scripting. A script-based implementation of MultiGridSolver,

in addition to the C++, is underway.

ACKNOWLEDGMENT

The authors would like to express heartfelt gratitude to

Prof. François Fauré, Université Joseph Fourier, Grenoble,

France and Dr. Jérémie Allard, INRIA, Lille, France for their

invaluable suggestions and advices. This research was

supported by NIH grant 1 R43 NS067742-01.

REFERENCES

1. High-speed nonlinear finite element analysis for surgical

simulation using graphics processing units. Taylor Z, et al

2008 May, IEEE Trans Med Imaging., pp. 27(5):650-63.

2. Total Lagrangian explicit dynamics finite element

algorithm for computing soft tissue deformation. K. Miller,

et al., 2007, Comm. Numer. Meth. Eng., 23(2), pp121–134.

3. Multiplicative Jacobian Energy Decomposition method for

fast porous visco-hyperelastic soft tissue model.

Marchesseau S et al. Beijing : Springer, 2010. Med Image

Comput Comput Assist Interv. pp. 13(Pt 1):235-42.

4. SOFA. SOFA, Simulation Open Framework Architecture.

[Online] http://www.sofa-framework.org/home.

5. SOFA - an Open Source Framework for Medical

Simulation. J. Allard et al. 2007. Medicine Meets Virtual

Reality (MMVR'15). pp. pages 13-18.

6. Multigrid Integration for Interactive Deformable Body

Simulation. X. Wu, F. Tendick. Cambridge, MA : Springer,

2004. Int. Symp. Med. Sim.. pages 92-104.

3093

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

