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Abstract— In this paper, we present the implementation of a 

Multigrid ODE solver in SOFA framework. By combining the 

stability advantage of coarse meshes and the transient detail 

preserving virtue of fine meshes, Multigrid ODE solver 

computes more efficiently than classic ODE solvers based on a 

single level discretization. With the ever wider adoption of the 

SOFA framework in many surgical simulation projects, 

introducing this Multigrid ODE solver into SOFA’s pool of 

ODE solvers shall benefit the entire community. This 

contribution potentially has broad ramifications in the surgical 

simulation research community, given that in a single-resolution 

system, a constitutively realistic interactive tissue response, 

which presupposes large elements, is in direct conflict with the 

need to represent clinically relevant critical tissues in the 

simulation, which are typically be comprised of small elements.      

I. INTRODUCTION 

The broad objective of medical simulation is to exploit 

computers in order to synthesize the tissue response to a 

simulated therapy. More specifically, surgery simulation 

synthesizes tissue response to simulated surgical tools, such as 

a mechanical response to virtual cutting or manipulation. The 

simulated tissue behavior is a trade-off between material 

fidelity and computational efficiency, which can be thought of 

as a spectrum. The first pole of this spectrum coincides with 

predictive simulation, which consists of highly accurate 

off-line computations used by expert surgeons. The opposite 

pole can be termed interactive simulation, and offers a means 

of training surgical residents, in order to improve their skill 

without risk to a real patient, by way of a haptic device. 

Increasingly, the research community has sought to bridge the 

conflicting requirements inherent in the two poles, leading to 

the development of new efficiencies. These efficiencies are 

based on either hardware acceleration, typically graphical 

processor units (GPUs) [1], or on novel algorithms, such as 

constitutively and geometrically nonlinear elasticity models 

that leverage preprocessing based on reference coordinates: 

the Total Lagrangian Explicit Dynamics (TLED) [2] and 

Multiplicative Jacobian Energy Decomposition (MJED) [3].   

The development of the Simulation Open Framework 

Architecture (SOFA) [4] for Medical Simulation has not only 

greatly enhanced the research community’s ability to develop 

new algorithms more quickly, but also serves as as an efficient 
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prototyping tool [5]. SOFA has included a handful of ODE 

solvers already, such as explicit Runge-Kutta, and implicit 

Euler, to name two. All of these solvers can process complex 

couplings of objects each modeled with a single and different 

discretization, however none of them is able to exploit 

multiple resolutions of the same object. Despite the modular 

and multi-modality mapping features in SOFA which can 

improve visual detail by pairing a fine-resolution visual model 

with a coarse mechanical model, single-level based explicit or 

implicit ODE solvers simply cannot retain the integration 

stability and transient dynamic details at the same time. 

A Multigrid ODE solver [6] has been proposed to accelerate 

the time integration of tissue deformation with interactive 

medical simulation application in focus. By combining the 

stability advantage of coarse meshes and the transient 

detail-preserving virtue of fine meshes, the Multigrid ODE 

solver provides more efficient computation than classic ODE 

solvers coupled with a single mesh representation. This paper 

describes the implementation details of such Multigrid ODE 

solver (MultiGridSolver) into the current SOFA public 

release, as well as several enhancements over the original 

solver proposed in [6].  

II. METHODOLOGY 

A. Broad Objective: a SOFA Multigrid ODE Solver class 

Our goal is to realize a MultiGridSolver in SOFA as an 

ODE solver class. This implementation is consistent with the 

architecture of SOFA, which exploits separate models 

representing the deformable anatomy, which are specialized 

for the following aspects of the simulation: 

 Visualization: typically a relatively dense triangular 

surface model.  

 Continuum mechanics: usually a tetrahedral mesh 

model that is coarser than the visualization model. 

 Collision detection: a number of schemes are suppor- 

ted, including a representation of an organ in terms of 

coarse spheres or a coarsely triangulated surface.  

In current modular design of SOFA, an ODE solver accesses 

MechanicalState (container of state vectors) of the associated 

MechanicalObject at the current time stamp, aggregates all the 

forces applied to the deformable object, and then evolves the 

state to the next time stamp. It is important to understand that 

all existing SOFA’s ODE solvers do not compute the forces, 

e.g. collision forces, body forces. They merely aggregate them 

as already computed by other Visitor instances invoked in the 

animation loop. Before demonstrating our implementation, we 

present background information to facilitate the understanding 
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of the differences between MultiGridSolver and existing 

single-level SOFA ODE solvers. 

B.  MultiGridSolver’s V-cycle 

In constrast to single-level solvers included in SOFA, 

MultiGridSolver needs to access the states of several 

MechanicalObject instances. These MechanicalObjects, 

whose discrete mesh representations have different resolutions, 

are arranged in a sorted fashion. MechanicalObject
(0)

 at level 0 

represents the finest mesh whereas MechanicalObject
(M-1)

 has 

the coarsest mesh for an M-level MultiGridSolver scheme. 

MechanicalObject
(0)

 is used to change the appearance of the 

deformable anatomy’s corresponding VisualModel and to 

respond to the anatomy’s CollisionModel. The Multigrid 

solver passes information among multiple discretizations in a 

V-cycle fashion demonstrated in the right half of Figure 1.  

 

Figure 1. Multigrid ODE Solver’s RSV V-cycle in SOFA animation loop 

When integrating Xn
(0)

, MechanicalState of 

MechanicalObject
(0)

, from time stamp n to n+1, the 

displacement information in Xn
(0)

 and both the external and 

induced internal forces will propagate to and from the coarser 

levels, i.e. MechanicalObject
(i)

 where   [     ]. 

MultiGridSolver‘s Restrict-State-and-Variation (RSV) 

scheme is chosen here to be implemented into SOFA due to 

its stability and convergence performance in comparison with 

a number of competing approaches [6].  

In the beginning of each RSV V-cycle, MultiGridSolver first 

maps the state Xn
(i-1)

 of each degree-of-freedom (DOF) of 

MechanicalObject
(i-1)

to the next coarser level’s state Xn
(i)

 by 

either restricting Xn
(i-1) 

directly or updating Xn
(i)

 with the 

restricted version of  Vn
(i-1)

   Xn
(i-1)

 –    Xn-1
(i-1)

 , the variation 

of the corresponding DOF at time stamp n and level i-1. 

Please refer to [6] for the details on the switching between 

state mapping and variation mapping. Once the coarsest level 

is reached, Xn
(M-1) 

can be thought as the restricted version of 

Xn
(0)

. RSV then computes and aggregates the forces on Xn
(i)

 

before ODE integration to time stamp n+1.  

The second stage of the RSV scheme interpolates the coarse 

mesh state to fine meshes. In a manner similar to the 

restriction switching mechanism, each DOF’s Xn
(i-1) 

is either 

an interpolation of Xn+1
(i)

 or updated with the interpolation of 

Vn+1
(i)

. Finally Xn
(0)

 becomes the interpolated version of 

Xn+1
(M-1)

 and is integrated to Xn+1
(0)

 by the end of each 

MultiGridSolver loop. Apart from the standard interface of 

existing SOFA ODE solver class, every V-cycle requires 3 

more components: 

1. The state at both time stamps n and n-1 of a series of 

MechanicalObject
(i)

. 

2. The mapping between adjacent-level Mechanical- 

Object meshes. 

3. The capability to trigger the computation of external 

forces, e.g. penalty forces, due to collision at every level. 

The remaining subsections will illustrate how our implemen- 

tation incorporates the above extra information into SOFA. 

C.   Accessing multiple MechanicalObject states 

In our implementation, MultiGridSolver embeds several 

SOFA Node’s. Each Node contains a Mechani- calObject as 

well as MeshLoader, MeshTopology, FEMForceField, 

UniformMass, ODESolver, and elements needed by 

CollisionPipeline. Then MechanicalObject
(0)

 and 

CollisionPipeline
(0)

 are referenced in the main SOFA tree, 

which also contains the deformable object’s visual model, 

e.g. OglModel, and of course, the ODESolver, i.e. 

MultiGridSolver . Figure 2 illustrates the multiple Node 

instances embedded in MultiGridSolver as well as the 

references of top level of MechanicalObject and 

CollisionPipeline in the SOFA main tree. At every step, 

SOFA’s main animation visitor will invoke 

MultiGridSolver::solve(),  where the sequential restriction 

and interpolation will be invoked. Since each Node in 

MultiGridSolver contains ODESolver as well, the time 

integration of each MechanicalObject
(i)

 will be performed in 

MultiGridSolver::solve() as well.  

 

D. Mapping adjacent meshes 

The meshes of MechanicalObject
(i)

 and Mechani- 

calObject
(i-1)

 are mapped with each other through SOFA’s 

MeshBarycentricMapperEngine during the initialization of 

MultiGridSolver, i.e. Multi- GridSolver::init(). Such mapping 

associates every vertex’s displacement on one mesh to a 

weighted sum of all the corner vertices’ displacement of an 

element in another mesh during MultiGridSolver V-cycle. 

Since the mapping has to be performed before the SOFA 

main animation loop starts, after each MultiGridSolver Node 

and its child objects are instantiated, Node::init() has to be 

called before calling MultiGridSolver:: init(). This approach 

is unconventional with respect to existing SOFA applications 

where init() method of all instantiated Nodes and child objects 

are invoked implicitly through the root Node’s init() by the 

end of main function. This is because all the objects in the 

existing SOFA applications can be traversed from the main 

tree and there is no cross-node coupling.  

E. Resolving contacts within MultiGridSolver 

The contact resolution requirement has proved to be the 

most difficult to resolve in the current SOFA architecture. A 

SOFA ODE Solver’s solve() method only aggregates the 

already computed modular forces. The collision detection and 
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the induced collision forces have been calculated by 

CollisionPipeline visitor prior to an ODE solver’s solve() 

being called. Secondly, in the ascending portion of 

MultiGridSolver V-cycle, once Xn
(i-1)

 is updated given Xn+1
(i)

 

and Vn+1
(i)

, the contact between Mechanical- Object
(i-1)

 and 

the rest of the contact bodies in a SOFA simulation has to be 

resolved. Users have to develop a custom AnimationLoop in 

order to support such interaction within an ODE solver class 

in the current SOFA release. The main idea behind our 

approach is to carefully arrange all the objects both in the 

main simulation tree and each Node embedded in 

MultiGridSolver illustrated in Figure 2.  

Fundamentally, Node
(i)

 has to contain objects embodying a 

collision pipeline in addition to objects describing a 

deformable object. Also, the references of other objects’ 

collision models in the SOFA scene have to be registered in 

Node
(i)

. Recall that Node
(i)

 has its own (standard) ODE solver, 

e.g. (ex/implicit) Euler solver. The main simulation tree 

copies the same tree structure as Node
(0)

 of MultiGridSolver 

except that the reference to ODESolver is replaced by an 

instance of Multi- GridSolver class. Note that the objects 

instantiated within MultiGridSolver child nodes are not 

duplicated but rather referenced. By customizing MultiGrid- 

Solver::solve() and accessing CollisionPipeline
(i)

,  Node
(i)

 can 

now perform collision detection against current mechanical 

states, aggregate the collision response and other forces, and 

launch that level's  

 
Figure 2. Multigrid ODE Solver based simulation application diagram. 

ODESolver::solve()  in order to update the state  to the next 

time stamp. The advantages of this approach are that it offers 

the least intrusion into existing SOFA architecture and the 

most flexible. One disadvantage of this setup is one extra 

collision detection performed in the main animation loop 

before MultiGridSolver::solve() is invoked. 

F.   Improvements over the original Multigrid algorithm 

Along with our implementation based on SOFA, we have 

 improved the original Multigrid solver in several areas: 

1. Selecting different ODE solvers for different levels - The 

original Multigrid ODE solver deployed the same ODE 

solver at every level, e.g. explicit Euler. Despite its 

simplicity, it was less flexible to be customized. In the 

implementation presented in this paper, each level can 

have different ODE solvers. One example is applying 

explicit Euler from level 0 to M-2 and implicit Euler at 

the coarsest level M-1. While the coarsest level achieves 

unconditional stability, the explicit methods in fine levels 

improve the transient details of the deformation.  

2. Applying different time steps for different levels - In the 

original algorithm, an M level MultiGridSolver with step 

size t yields every level’s ODESolver to have equal step 

size t/M. In conjunction with the previous improvement, 

the user now can assign arbitrary distributions of step 

sizes to different levels provided the partition of unity of 

these distribution factors. As an example, define N
(i)

 as 

the count of elements at level i. Assuming every level 

uses a uniform mesh, the higher the count of elements, 

the smaller the elements get, and thus smaller step size is 

needed for the stability of an explicit ODE solver. The 

step size at level i is 

     
      

∑(      )
                                    (1) 

The user can certainly deploy more elaborated measure 

of element size and stiffness than this naïve approach to 

control the step size distributions. In general, the finer 

mesh gets a smaller step size. If ODESolver
(M-1)

 is 

implicit, the user can assign bigger portion of t to the 

coarsest level to further improve the stability of the 

hybrid MultiGridSolver who combines both explicit 

solvers on fine levels and implicit solvers on the coarsest 

level. Certainly this approach would reduce the transient 

details captured. 

III. RESULTS 
We have tested our 4-level MultiGridSolver against a 

single level ODE solver in SOFA  public release 1.0 beta4 on 

an Intel Core i7-2720QM laptop in Debug mode. Figure 3 is a 

screenshot of the application running in SOFA GUI where 

OglModel and CollisionModel are triangular mesh of a ball. 

The surface mesh is mapped to MechanicalObject who is 

based on multiple tetrahedron meshes of the same cube 

geometry. The ball drops under gravity and collides with 

bowl-shaped fixed floor. 

The reference case applies a single level ODE solver on the 

finest mesh used by MultiGridSolver. The performance 

results are summarized in Table 1 and 2. When using 

MultiGridSolver as a pure explicit ODE solver, it is more 

efficient than single level based ODE solver. MultiGridSolver 

uses 50% amount of time of its single- level explicit Euler 

brother to simulate the scene to the same length of time. 

Although the hybrid version of MultiGridSolver cannot 

compete with single-level implicit Euler in terms of stability, 

it takes 50% less amount of time to finish each solve() call. In 

addition, the hybrid MultiGridSolver introduces less artificial 

damping as well because of the fine level’s explicit ODE 

solvers. In the example recorded in Table 2, 50% of the total 

portion of time step assigned to level 0 to 2 computed from 

eq. (1) has been assigned to level 3. Namely, the coarsest 

level’s implicit Euler solver simulates a step size of 17ms 

while level 0 to 2 explicit Euler solvers simulate a total step 

size of 6ms. By applying 17ms step size to Single-level 
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ODESolver case with implicit Euler, it will need 

(1000/17)(1/3.5)=16.807sec CPU time to finish 1sec of the 

simulated scene with comparable amount of artificial 

damping than the hybrid MultiGridSolver counterpart.  

 

 
Figure 3. MultiGridSolver based simulation in SOFA. 

 

 MultiGridSolver Single-level 

ODESolver 

Total Element Count 2570+1428+950+529=

5477 

2570 

Fine Level 

ODESolver 

Explicit Euler Explicit Euler 

Coarsest Level 

ODESolver 

Explicit Euler N/A 

Maximum Stable 

Step Size 

5ms 1ms 

Average FPS 14 34 

CPU Time to 
simulate 1 second 

(1000/5)(1/14)=14.286 
sec 

(1000/1)(1/34)=29.41
2 sec 

Table 1. Explicit MultiGridSolver performance 

 

 MultiGridSolver Single-level 
ODESolver 

Total Element 
Count 

2570+1428+950+529=
5477 

2570 

Fine Level 
ODESolver 

Explicit Euler Implicit Euler 

Coarsest Level 
ODESolver 

Implicit Euler N/A 

Maximum Stable 

Step Size 

23ms Any 

Average FPS 7 3.5 

CPU Time to 
simulate 1 second 

(1000/23)(1/7)=6.211 
sec 

(1000/1000)(1/3.5)=0.
286 sec 

Table 2. Hybrid MultiGridSolver performance 

IV. DISCUSSION AND FUTURE WORK 

This paper has presented work on the integration of a 

Multigrid ODE solver into the open-source platform. Our 

results represent a proof-of-concept of the feasibility of 

representing an object at different resolutions and using these 

various levels to collaboratively and stably estimate 

deformations, within the open-source SOFA platform. 

The recasting of surgery simulation, in terms of deformations 

applied to anatomical models of progressively finer 

resolution and smaller spatial extent, coinciding with the 

pathology, the surgical corridor to it, and neighboring 

critical tissues, will have profound impact on the simulation 

community. This approach is consistent surgical ontologies 

based on neurosurgical approach and pathology type, which 

naturally leads to smaller subvolumes of clinical interest, 

coinciding with medium- and fine-resolution meshes.  Last, 

this approach leads to multi-GPU massive parallelization.  

Last, our MultiGridSolver implementation integrates multiple 

MechanicalObjects during its setup. Since this is different 

from standard SOFA ODE Solver class interface, 

MultiGridSolver is not compatible with the current SOFA 

scripting. A script-based implementation of MultiGridSolver, 

in addition to the C++, is underway.  
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