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Abstract— The desire to produce robots to aid in physical
neurorehabilitation has led to the control paradigm Assistance-
As-Needed. This paradigm aims to assist patients in performing
physical rehabilitation tasks whilst providing the least amount
of assistance required, maximizing the patient’s effort which
is essential for recovery. Ideally the provided assistance equals
the gap between the capability required to perform the task
and the patient’s available capability. Current implementations
derive a measure of this gap by critiquing task performance
based on some criteria. This paper presents a task description
model for tasks performed by a patient’s limb, allowing physical
requirements to be calculated. Applied to two upper limb tasks
typical of rehabilitation and daily activities, the effect of task
variations on the task’s physical requirements are observed. It is
proposed that using the task description model to compensate
for changing task requirements will allow better support by
providing assistance closer to the true needs of the patient.

I. INTRODUCTION

Robotic rehabilitation aims to improve the efficiency and
efficacy of recovery of patients requiring physical neuroreha-
bilitation. The use of robotics has shown to be beneficial [1]–
[4] however it is still unclear what is the best rehabilitation
paradigm. A good review of control strategies used can be
found in [5]. The paradigm Assistance-As-Needed (AAN),
sometimes referred to as performance-based rehabilitation
has shown promising potential [6]–[8]. AAN aims to assist
a patient with the minimum assistance required for them
to perform physical tasks. Generally, the ideal assistance
equals the gap between the capability the patient has and
the capability the task requires, illustrated by Fig. 1. It’s rea-
soned that minimizing assistance increases the patient effort
essential for neurorehabilitation [9]. Expressing maximum
physical effort is also analogous to strength training which
aids recovery [10]–[13].

Determining this gap is a challenge. It requires estimation
of both task requirement and patient capability. A solution is
to derive a measure of this gap empirically by critiquing task
execution against performance criteria. Providing assistance
based on this measure, combined with a forgetting factor will
converge to an assistance appropriate for the patient and task
[6]–[8]. Although promising, limitations still exits.

The ability of an empirically derived performance measure
to reflect the assistance needs of a patient during a task
depends on how it was calculated. For example a point-
to-point movement task critiqued solely on total time taken
does not encapsulate how the patient’s capability changed
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during the task. Assistance adaption is then limited to be
task-by-task. Compare this to critiquing continuously during
the task (e.g., by movement smoothness) it may be possible
to identify segments within the movement requiring more
assistance and others requiring less. Secondly, systems that
rely highly on a forgetting factor to learn the patient’s needs
are subject to non-ideal assistance during learning. Changing
task requirements will increase learning time. Within the
hospital context this is less significant as normally only
a few well structured tasks are performed. However it is
conceivable (or even desirable) that in the future robotic
rehabilitation will make its way into the home, assisting
activities of daily living (ADL). In this scenario the variations
of tasks performed will be vast, and may require a long time
for the robot to learn appropriate assistance levels.

Task Execution
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Fig. 1: Generalization of the gap between the capability
the task requires during its execution, and the capability
available from the patient. The AAN paradigm aims to
provide assistance to fill this gap.

This paper presents a model for defining tasks performed
by a patient’s limb, allowing task requirements to be es-
timated. It is proposed that by using a task model to
compensate for changes in task requirements, rehabilitation
efficacy may be improved by providing assistance truer to the
patient’s needs. Section II develops the model used to define
the task, compute task requirement and task performance
measures. Section III defines and simulates two upper limb
tasks based on existing robotic therapies. The effect of task
variation consistent with ADLs are also investigated. Section
IV discusses the results in relation to AAN efficacy.

II. TASK FRAMEWORK

Tasks need to be defined such that measures representing
the task requirements and evaluating task performance can
be derived. Rehabilitation tasks are often critiqued by the
limb’s trajectory, for example a minimum-jerk movement
for the hand or a conventional walking gait for the lower
limb. Force interactions with the environment may also be
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part of the task or used to evaluate performance. With this
in mind we define the task by decomposing limb dynamics
into two components; movement and external load. The task
requirement may be generalized by (1) where ST is the
requirement from the task for it to be adequately performed,
Q is the limb motion, and F are external forces. Disturbances
during task execution, such as unexpected changes in limb
trajectory or external force, are represented by d.

ST = f(Q,F, d) (1)

Limb movement (Q) cannot always be fully defined by
the end point due to kinematic redundancy. We therefore
use vectors q, q̇ and q̈ to represent the position, velocity
and acceleration of the degrees of freedom (DOF); e.g., q =
[q1, q2, · · · , qk]T for k-DOF.

Force interactions (F ) with the environment are repre-
sented by scalar magnitude FE and workspace direction
unit-vector u = [ux, uy, uz]

T . For simplicity we assume
interaction occurs only at the end point of the limb and has
no moment component. Tasks may be defined as involving
one or both of these components. An example is shown in
Fig. 2.

u · FE

u(q1, q̇1, q̈1)

(q2, q̇2, q̈2)

Fig. 2: Example of a task utilizing the upper limb.

This task model can be utilized in an AAN paradigm to
represent task requirements and evaluate task performance.
For example, consider a robot assisting a patient perform-
ing point-to-point movements of the hand whilst opposing
external forces. Task performance may be critiqued against
a minimum-jerk movement profile using forward kinematics
based on q. Task requirement may be defined as the limb
joint torques required to perform the task. Using inverse
dynamics dependent on q, q̇ and q̈ and the external force
represented by u·FE , the required torques can be computed.

III. SIMULATION OF TASKS TYPICAL OF
REHABILITATION AND DAILY LIVING

To demonstrate using the task model in a realistic context
two scenarios typical of robotic rehabilitation are simulated.
The task model is used to observe how task requirements
change as the limb is moved during execution. Secondly, a
comparison of task requirement with and without an external

force typical of ADLs is performed. In terms of (1) we are
observing the change in task requirements (ST ) in response
to the task’s limb movement (Q) and ADL external force
(F ). Disturbances are considered random and their effects
are not simulated.

In Task 1 (Fig. 3a, based on [8]) the patient’s hand follows
trajectories from a home position to one of seven spatially
distributed targets in the frontal workspace. This mimics
activities such as lifting, carrying, and putting down objects.
An external force is used to compare task requirement with
and without an object being carried in the hand. A force
of 3N in the direction of gravity is used as 90% of ADL
objects lifted weigh 300g or less [14]. Task 2 (Fig. 3b,
based on [6]) is similar to the first except the home position
and eight targets are located in a horizontal plane at table
height. This mimics someone sliding an object across a
table top. Task requirements are compared with and without
a 2.5N horizontal force opposing movement at the hand,
representing a 700g bowl being slid [15].
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Fig. 3: Two tasks simulated; (a) Task 1 based on [8]. (b)
Task 2 based on [6].

Considering the choice of mechanism by which the need
for assistance is determined and consequently administered,
there is debate as to weather using motion or force is best
[9]. We choose strength (force) as it best suits our simulation.
Supporting this rationale are studies showing limb strength
is a large factor in limb functionality [16], [17].

To calculate the strength required to perform Task 1 and
Task 2 we compute the joint torque loading on the limb at the
shoulder and elbow. Joint loads are calculated as the hand is
moved from the home position to each of the task’s targets.
Elbow redundancy is resolved using the method proposed in
[18]. A musculoskeletal model [19] using 4 DOF relating to
the shoulder and elbow, with mass properties equivalent to
a 50th percentile male [20] [21] is used. For typical upper
limb ADLs the loads resulting from inertial, centrifugal and
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Coriolis effects are insignificant in comparison to the gravity
loading [22]. We therefore calculate the task requirements
as the shoulder and elbow strengths required to oppose
gravity and external forces during the task. Load torque on
the 4 DOFS are calculated using OpenSim [23], with the
three shoulder torques combined into a single load torque of
equivalent direction and magnitude. The task requirement is
then represented by the two magnitudes of torque required
at the shoulder and elbow joints.

IV. RESULTS AND DISCUSSION

Results for Task 1 (Fig. 4a) show the shoulder and
elbow strength requirement increases as the hand is extended
towards each target. Largest change was when reaching
for target 6. Shoulder strength requirement increased from
3.18 N.m to 9.89 N.m, a change of 6.71 N.m. Elbow re-
quirement increased from 3.61 N.m to 4.78 N.m, a change
of 1.17 N.m. The largest change in strength requirement
with and without external ADL force was also for target 6,
1.87 N.m and 1.35 N.m for shoulder and elbow, respectively.

Results for Task 2 (Fig. 4b) show the elbow strength
requirement changed little in response to both movement
and external force. This is due to little change in forearm
orientation during the task, and small moment arm between
the horizontal ADL force and elbow joint axis. Change
in required shoulder strength was largest when reaching
target 1, increasing from 5.89 N.m to 8.71 N.m, a change of
2.82 N.m. Largest change in shoulder strength requirement
from the ADL force was 0.79 N.m when reaching target 8.
For the elbow the largest change due to the ADL force was
0.56 N.m for target 7.

These results provide insight into the changing needs of
the patient due to changes in task requirements as they are
performed. They also allow estimation to the extent such task
variation can detract from providing true assistance as needed
if not accounted for. Consider a simple implementation of an
AAN robot that utilizes no task model. Empirically critiquing
task execution as a whole (from home to target) results in an
estimate indicative of the patient’s average assistance needs.
This scenario applied to Task 1, target 6, providing assistance
equal to this task’s median requirement will at its worse
provide ±51% off its actual requirements. Admittedly this
result is based on the task with largest variation, and we have
not considered changes in the patient’s capability, however
it does highlight the potential adversity of not considering a
task’s changing requirements.

Likewise we consider the effects of a typical ADL external
force on providing true AAN. Task 1 requires the patient
to oppose gravity, and since the ADL force from carrying
an object is also due to gravity, this effectively biases the
task requirement. A forgetting factor acting like the integral
term of a PID controller should be capable of compensating
this bias over time. Compare this to Task 2 where the
effect from the ADL force changes direction depending
on the interaction with the environment, in this case the
direction the object is slid across the table. A forgetting factor
would not be as effective in compensating, particularly for
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Fig. 4: Results showing task strength requirements changing
during task execution. Required shoulder (red) and elbow
(black) strengths, plotted in solid and dashed curves repre-
senting with and without ADL external force, respectively.
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loads changing often. Such a scenario would occur during
interaction with unstructured environments, for example in
the household.

V. CONCLUSION

In this paper we presented a task description model
for modeling physical tasks performed by a patient. This
model can be used to estimate task requirements, providing
information that then could be used to adapt the assistance
provided by a robot during rehabilitation. Applying the task
model to two realistic rehabilitation scenarios we observed
how the task requirements changed.

Results showed for the tasks simulated their strength
requirements changed significantly, both due to limb move-
ment and from the addition of conservative external forces
consistent with typical ADLs. Furthermore, the effect of the
ADL external force on task requirements depended on how it
was applied, for example the direction an object is slid across
a table. This highlights that in unstructured environments
where the tasks vary (e.g., picking up or sliding an object)
changes in the task requirements are significant and need to
be accounted for to provide assistance true to the needs of
the patient.

The task model presented here is a step towards developing
an AAN framework for providing robotic assistance based
on the changing needs of the patient. A model like the one
presented here could be used to compensate for changes in
task requirements. A future goal is to combine a model that
estimates changes in task requirements with a model esti-
mating patient capabilities, for example [24]. The resulting
estimate of the gap between task requirement and patient
capability may form the basis on which assistance can be
provided.
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