
 
 

Abstract—A data driven surrogate was developed to bridge 

the gap between finite element and multibody modeling and to 

expand the information available from a rigid multibody 

cartilage simulation.  An indentation experiment performed 

on canine stifle cartilage was modeled in both paradigms with 

acceptable accuracy and the data were used to create the 

surrogate. Neural networks were found to adequately 

approximate the von Mises stress calculated by the finite 

element model based on force values provided from the 

multibody model with a correlation coefficient over 0.96. 
 

Index Terms— knee, canine, cartilage, multiscale, finite 

element, multibody  

I. INTRODUCTION 

NOWLEDGE of in vivo knee loading and cartilage stress 

would greatly benefit the development of engineered 

musculoskeletal tissues, joint injury prevention and repair, 

and our understanding of degenerative joint disease, 

specifically osteoarthritis. With current technologies, 

mechanical loading in the natural knee cannot be measured 

during dynamic activity. Computational techniques coupled 

with gait measurements and medical imaging hold the 

promise of predicting subject-specific joint loading. In 

general, two approaches are used in computational 

biomechanics; the finite element (FE) method and the 

multibody (MB) method. The finite element method can 

predict the internal stress and deformation of tissues, but 

simulations are computationally intensive, have simplified 

loading and boundary conditions, and typically do not 

include representation of individual muscles. The 

multibody method is used in body level musculoskeletal 

models that can predict individual muscle forces, but 

typically these models have simplified representations of  
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the joints [1].  The overall goal of this work is to develop a 

multiscale modeling method that translates loading on rigid 

elements in a body level multibody musculoskeletal model 

to tissue-level prediction of stress (Fig. 1). Specifically, 

data-driven surrogate models that learn from cartilage level 

FE solutions will be embedded within an anatomical knee 

model placed in a body-level musculoskeletal model. The 

end result is concurrent prediction of muscle forces and 

tissue-level cartilage stress during forward dynamic 

simulations of movement.    

Finite element models of articular cartilage are typically 

formulated from isolated cartilage with properties (and 

validation) determined through indentation, confined 

compression, or unconfined compression testing [2].  In 

vivo characterization of tissue-level parameters, such as 

stress, would benefit from inclusion of patient-specific joint 

loading, patient-specific geometries, and ideally, patient-

specific material properties. FE tissue models have been 

coupled with musculoskeletal models to predict tissue-level 

stress in the patello-femoral joint [3, 4]. A limitation of 

these models is that they are not linked through concurrent 

simulation where tissue level parameters could influence 

muscle activations, which in turn would modify tissue-level 

loading. Halloran et. al. have used adaptive surrogate 

modeling techniques to couple the multibody and FE 

domains [5]. In their method a 2-D musculoskeletal model 

of jumping was coupled with a FE model of the foot. At 

each time step, a FE simulation was run or previous results 

utilized if a solution already existed within a user-specified 

tolerance.     

Presented here is a method to develop a data-driven 

surrogate that learns from FE solutions of cartilage.  The 

surrogate can then be embedded in MB musculoskeletal 

models for concurrent prediction of tissue level parameters.  

Specifically, various linear and non-linear models were 

developed to predict the von Mises stress of rigid cartilage 

elements in a MB model. Inputs to the surrogate models 

were reaction forces on the rigid cartilage elements and 

outputs were the resulting tissue level stress. Solution sets 

for surrogate training and validation came from MB and FE 

models of simulated indentation testing of canine tibia 

cartilage.  
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profile to that of the experiment. Specifically, three-factor 

central composite designs (CCD) were used to minimize the 

error between the two curves. The same load profile was 

used to determine appropriate FE model parameters. 

C. Model Training Data Generation 

To generate data that were more  physiologically relevant, it 

was decided to use a 6 mm radius indenter and a dynamic 

loading profile that included sliding as well as vertical 

motion. 
 

 
Figure 3.  The MB training data model and the FE model.   
 

The data extracted from ADAMS consisted of the location 

and reaction forces in the X, Y, and Z directions at a loaded 

segment and the reaction forces at the adjacent 4 segments.  

The data extracted from ABAQUS consisted of the reaction 

forces and the von Mises stress. Once the surrogate 

methodology was selected the final training data were 

collected from a model with a noisy profile.  The noisy 

loading profile was driven by force in the vertical direction 

and by position in the lateral directions. The vertical force 

profile consisted of a ramp from 0-5 s and a constant level 

for the remaining 5 s.  Low frequency noise was added to 

this, spanning from 1-10 s.  The lateral position profile 

similarly consisted of a ramp and hold with noise and a 

maximum displacement of 5 mm.  Noise was added to the 

lateral profile from 5-10 s and the lateral profile was 

applied at a random angle between 10-35°.  

D. Surrogate Creation 

Both linear and nonlinear surrogate models were explored 

to find the functional relationship between the von Mises 

stress from the FE model and the reaction forces from the 

MB model, which to our knowledge has never been 

characterized.  For nonlinear system identification, several 

single hidden layer feed forward neural networks (NN) 

were investigated. NNs have been shown to be universal 

nonlinear function approximators [7], and thus it is 

hypothesized that their regression is better than linear 

regression models, which have been used as the reference 

point in this study. 

Mean squared error (MSE) was chosen as model 

performance measure, which is calculated as the average of 

the squared differences between model-predicted vs. 

desired (ground truth) outputs. The choice of MSE for 

fitness metric was further corroborated by observation of 

zero-mean, Gaussian residues of the NN models (Fig 5).  It 

can be shown that the maximum likelihood solution for 

regression, if successful, leads to minimizing the MSE 

when modeling errors have  normal distribution [8].  

Additionally, correlation coefficients between model 

predictions and desired outputs, R, are also reported (Fig. 

6). The closer the R-values to one, especially for the unseen 

test data, the better. Furthermore, smaller disparities 

between training and test performance measures are a sign 

of proper training and appropriate choice of model, as over-

parameterized models tend to have low training but high 

test errors [9].  

All the models were simulated using 64 bit MATLAB®, 

version R2010b (Mathworks, MA) and its neural network 

toolbox running on an Intel® Core-2 Duo® based computer 

with 64 bit Mac OS X® 10.6 operating system.  
 

Linear Regression: For the linear surrogate, a 15-

dimensional linear model was fit to 70% of the data chosen 

by random selection as the training set. The remaining 30% 

was used to test the model, yielding a training MSE of 

1,625,700 kPa
2
 and a test MSE of 1,660,700 kPa

2
. The 

predicted vs. target correlation coefficients were 0.6916 for 

training and 0.6847 for test data Obviously the linear 

surrogate was not successful in capturing the system's 

input-output relationship given its poor performance, in 

terms of high MSE and low R, on both test and training 

data. 
 

Neural Networks: Given the dependence of learning and 

generalization power of NN models on their size [9], 15 

different neural networks with 2-30 nodes in their hidden 

layers were examined, where the number of nodes in their 

hidden layers was varied from 2 to 30. Hyperbolic tangent 

activation functions were chosen for the hidden nodes. 

Linear activation functions were used for the output nodes 

to achieve larger dynamic range and better performance [9]. 

Levenberg-Marquardt gradient decent algorithm was used 

with validation based early stopping to preserve the 

generalization power of the trained networks. The dataset 

was partitioned into training (70%), validation (15%), and 

test (15%) subsets using random sampling. The results for 

each NN were averaged over five training runs starting 

from randomly initialized weight sets, as NNs may 

converge to a different local solution during each iterative 

gradient descent solution. 

Among the investigated NNs, the best model size was 

chosen using two criteria for better generalization: lower 

validation error, and smaller size. The result was a network 

with 16 hidden nodes yielding average training MSE of 

97,397 kPa
2
, average validation MSE of 108,630 kPa

2
, and 

average test MSE of 108,260 kPa
2
. 

III. RESULTS AND DISCUSSION  

The overall results have closely followed the expected 

trends. The FE and MB models were able to reproduce 

experimental conditions (Fig. 4) and an NN-based surrogate 

modeling method was identified.  This is supported by the 

blind testing of another 5 s loading profile in all models. 

This produced the expected error distribution (Fig. 7). 
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