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A Data-driven Surrogate Model to Connect Scales
between Multi-domain Biomechanics Simulations
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Abstract—A data driven surrogate was developed to bridge
the gap between finite element and multibody modeling and to
expand the information available from a rigid multibody
cartilage simulation. An indentation experiment performed
on canine stifle cartilage was modeled in both paradigms with
acceptable accuracy and the data were used to create the
surrogate. Neural networks were found to adequately
approximate the von Mises stress calculated by the finite
element model based on force values provided from the
multibody model with a correlation coefficient over 0.96.

Index Terms— Knee, canine, cartilage, multiscale, finite
element, multibody

1. INTRODUCTION

KNOWLEDGE of in vivo knee loading and cartilage stress
would greatly benefit the development of engineered
musculoskeletal tissues, joint injury prevention and repair,
and our understanding of degenerative joint disease,
specifically osteoarthritis. With current technologies,
mechanical loading in the natural knee cannot be measured
during dynamic activity. Computational techniques coupled
with gait measurements and medical imaging hold the
promise of predicting subject-specific joint loading. In
general, two approaches are used in computational
biomechanics; the finite element (FE) method and the
multibody (MB) method. The finite element method can
predict the internal stress and deformation of tissues, but
simulations are computationally intensive, have simplified
loading and boundary conditions, and typically do not
include representation of individual muscles. The
multibody method is used in body level musculoskeletal
models that can predict individual muscle forces, but
typically these models have simplified representations of

This work was supported by the Missouri Life Sciences Research
Board, Award Number 09-1078.

G. Paiva is with the University of Missouri-Kansas City, Kansas City,
MO 64110 USA.

S. Bhashyam, is with the University of Missouri-Kansas City, Kansas
City, MO 64110 USA.G.

G. Thiagarajan is with the Civil and Mechanical Engineering
Department, University of Missouri-Kansas City, Kansas City, MO 64110
USA.

R. R. Derakhshani is with the Electrical Engineering and Computer
Science Department, University of Missouri-Kansas City, Kansas City,
MO 64110 USA (phone: 816-235-5338; e-mail: reza@umkc.edu).

T. M. Guess is with the Civil and Mechanical Engineering Department,
University of Missouri-Kansas City, Kansas City, MO 64110 USA.

978-1-4577-1787-1/12/$26.00 ©2012 |IEEE

the joints [1]. The overall goal of this work is to develop a
multiscale modeling method that translates loading on rigid
elements in a body level multibody musculoskeletal model
to tissue-level prediction of stress (Fig. 1). Specifically,
data-driven surrogate models that learn from cartilage level
FE solutions will be embedded within an anatomical knee
model placed in a body-level musculoskeletal model. The
end result is concurrent prediction of muscle forces and
tissue-level cartilage stress during forward dynamic
simulations of movement.

Finite element models of articular cartilage are typically
formulated from isolated cartilage with properties (and
validation) determined through indentation, confined
compression, or unconfined compression testing [2]. In
vivo characterization of tissue-level parameters, such as
stress, would benefit from inclusion of patient-specific joint
loading, patient-specific geometries, and ideally, patient-
specific material properties. FE tissue models have been
coupled with musculoskeletal models to predict tissue-level
stress in the patello-femoral joint [3, 4]. A limitation of
these models is that they are not linked through concurrent
simulation where tissue level parameters could influence
muscle activations, which in turn would modify tissue-level
loading. Halloran et. al. have used adaptive surrogate
modeling techniques to couple the multibody and FE
domains [5]. In their method a 2-D musculoskeletal model
of jumping was coupled with a FE model of the foot. At
each time step, a FE simulation was run or previous results
utilized if a solution already existed within a user-specified
tolerance.

Presented here is a method to develop a data-driven
surrogate that learns from FE solutions of cartilage. The
surrogate can then be embedded in MB musculoskeletal
models for concurrent prediction of tissue level parameters.
Specifically, various linear and non-linear models were
developed to predict the von Mises stress of rigid cartilage
elements in a MB model. Inputs to the surrogate models
were reaction forces on the rigid cartilage elements and
outputs were the resulting tissue level stress. Solution sets
for surrogate training and validation came from MB and FE
models of simulated indentation testing of canine tibia
cartilage.

3077



= Fi

Figﬁre 1: Modeling scheme for concurrent simulation of body-level to tissue level.

Experimental indentation tests were used to determine
material properties for the FE model. The resulting
surrogate increases the utility of MB models by increasing
the amount of information that can be obtained, in this case
by predicting von Mises stress.

II. METHODS

A. Multibody Cartilage Overview

Multibody cartilage models can be created in the
MD.ADAMS software (MSC software, Santa Ana, CA)
from an IGES geometry of the articular cartilage through
the use of custom ADAMS macros. These macros
automate the process of intersecting a square prism with the
cartilage geometry to generate a single segment that is then
fixed to a part representing the underlying subchondral
bone. Before moving to the adjacent space to repeat the
process the macro creates a contact between the each new
segment and the overlying part. The deformable contact law
is a penalty function that discourages overlap:

F=K§+B(&S5 (1)

Where K is the linear stiffness, § is the interpenetration
depth, B is a damping coefficient and e is a force exponent.
With appropriate tuning this contact law can be used to
model many physiological loading scenarios (Fig. 2).

B. Experimental Validation

To first ascertain suitable properties for the MB and FE
models a cartilage indentation experiment was performed.
The experiment used a 2 mm radius impermeable indenter
under a ramp force profile to determine the displacement of
the articular cartilage of a canine tibial plateau. The
indentation was performed approximately normal to the
surface of a thawed specimen.

An FE model of the experiment was created using
ABAQUS (ABAQUS Inc., Providence, RI) in order to
determine the properties of cartilage. The tissue was
represented by a cylinder of radius 20 mm and thickness 4.5
mm. The top layer, with a thickness of 2.14 mm (as
measured from the MRI of a canine knee), was defined as
cartilage and the bottom layer was defined as bone. The
indenter was represented by a cylinder with a hemispherical
tip of radius 2 mm. The cartilage and bone were defined as
elastic solids; while, the indenter was modeled as a rigid
shell with a steel equivalent point mass. The cartilage was

meshed using 11445 hexahedral elements with a side length
of 0.7 mm. Initial values for the material properties were
determined from a previous study [6].

Dynamic explicit analysis was performed using this model.
The general contact method was used to define the
interaction between the cartilage and indenter. This method
allowed definition of the contact between all regions of the
model with a single interaction. It is generally used in cases
of all-inclusive surfaces that contain external faces and shell
perimeter edges. Normal interaction with hard contact was
used to define the pressure overclosure. The indenter was
constrained in all degrees of freedom except the vertical.
The bottom surface of the cylinder was fixed in all degrees
of freedom. A force matching the experimental load was
applied to the indenter and the corresponding displacement
was compared to the experimental value. The elastic
modulus was tuned in this manner until a value of 32.5 MPa
was determined to match the indenter displacement to the
experimental values.

Figure 2. The calibration model in unloaded and loaded conditions

showing the contact patch in the MB model.

For easier comparison between the models the cylindrical
tissue in the above model was replaced by a cuboid of sides
20 mm and thickness 2.14 mm representing the cartilage. A
total of 6400 hexahedral elements of side 0.5 mm were used
to mesh the tissue. The bottom surface of the cuboid was
fixed, all the other definitions were the same as above. The
displacement of the indenter in this model was the same as
that of the earlier model, so it was assumed that the cuboid
with its bottom surface fixed could be used to represent the
bone and cartilage in all the following models (Fig. 3 and
4).

The first MB model was created in MD.ADAMS and
consisted of a 2.36 mm thick squat cylinder representing the
underlying cortical bone, the MB cartilage, and the 2 mm
radius spherical ended indenter (Fig. 2). The cartilage disc
was partitioned using 0.5 mm square prisms. The measured
force profile was applied along the vertical axis of the
indenter and the corresponding displacement of the model
was recorded. Design of experiments was used to modify
the contact parameters to match the model displacement
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profile to that of the experiment. Specifically, three-factor
central composite designs (CCD) were used to minimize the
error between the two curves. The same load profile was
used to determine appropriate FE model parameters.

C. Model Training Data Generation

To generate data that were more physiologically relevant, it
was decided to use a 6 mm radius indenter and a dynamic
loading profile that included sliding as well as vertical
motion.

Figure 3. The MB training data model and the FE model.

The data extracted from ADAMS consisted of the location
and reaction forces in the X, Y, and Z directions at a loaded
segment and the reaction forces at the adjacent 4 segments.
The data extracted from ABAQUS consisted of the reaction
forces and the von Mises stress. Once the surrogate
methodology was selected the final training data were
collected from a model with a noisy profile. The noisy
loading profile was driven by force in the vertical direction
and by position in the lateral directions. The vertical force
profile consisted of a ramp from 0-5 s and a constant level
for the remaining 5 s. Low frequency noise was added to
this, spanning from 1-10 s. The lateral position profile
similarly consisted of a ramp and hold with noise and a
maximum displacement of 5 mm. Noise was added to the
lateral profile from 5-10 s and the lateral profile was
applied at a random angle between 10-35°.

D. Surrogate Creation

Both linear and nonlinear surrogate models were explored
to find the functional relationship between the von Mises
stress from the FE model and the reaction forces from the
MB model, which to our knowledge has never been
characterized. For nonlinear system identification, several
single hidden layer feed forward neural networks (NN)
were investigated. NNs have been shown to be universal
nonlinear function approximators [7], and thus it is
hypothesized that their regression is better than linear
regression models, which have been used as the reference
point in this study.

Mean squared error (MSE) was chosen as model
performance measure, which is calculated as the average of
the squared differences between model-predicted vs.
desired (ground truth) outputs. The choice of MSE for
fitness metric was further corroborated by observation of
zero-mean, Gaussian residues of the NN models (Fig 5). It
can be shown that the maximum likelihood solution for
regression, if successful, leads to minimizing the MSE
when modeling errors have normal distribution [8].

Additionally, correlation coefficients between model
predictions and desired outputs, R, are also reported (Fig.
6). The closer the R-values to one, especially for the unseen
test data, the better. Furthermore, smaller disparities
between training and test performance measures are a sign
of proper training and appropriate choice of model, as over-
parameterized models tend to have low training but high
test errors [9].

All the models were simulated using 64 bit MATLAB®,
version R2010b (Mathworks, MA) and its neural network
toolbox running on an Intel® Core-2 Duo® based computer
with 64 bit Mac OS X® 10.6 operating system.

Linear Regression: For the linear surrogate, a 15-
dimensional linear model was fit to 70% of the data chosen
by random selection as the training set. The remaining 30%
was used to test the model, yielding a training MSE of
1,625,700 kPa’ and a test MSE of 1,660,700 kPa’. The
predicted vs. target correlation coefficients were 0.6916 for
training and 0.6847 for test data Obviously the linear
surrogate was not successful in capturing the system's
input-output relationship given its poor performance, in
terms of high MSE and low R, on both test and training
data.

Neural Networks: Given the dependence of learning and
generalization power of NN models on their size [9], 15
different neural networks with 2-30 nodes in their hidden
layers were examined, where the number of nodes in their
hidden layers was varied from 2 to 30. Hyperbolic tangent
activation functions were chosen for the hidden nodes.
Linear activation functions were used for the output nodes
to achieve larger dynamic range and better performance [9].
Levenberg-Marquardt gradient decent algorithm was used
with validation based early stopping to preserve the
generalization power of the trained networks. The dataset
was partitioned into training (70%), validation (15%), and
test (15%) subsets using random sampling. The results for
each NN were averaged over five training runs starting
from randomly initialized weight sets, as NNs may
converge to a different local solution during each iterative
gradient descent solution.

Among the investigated NNs, the best model size was
chosen using two criteria for better generalization: lower
validation error, and smaller size. The result was a network
with 16 hidden nodes yielding average training MSE of
97,397 kPaZ, average validation MSE of 108,630 kPaZ, and
average test MSE of 108,260 kPa’.

ITII. RESULTS AND DISCUSSION

The overall results have closely followed the expected
trends. The FE and MB models were able to reproduce
experimental conditions (Fig. 4) and an NN-based surrogate
modeling method was identified. This is supported by the
blind testing of another 5 s loading profile in all models.
This produced the expected error distribution (Fig. 7).
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Figure. 4: Comparative displacements of the two FE models, the MB
model and the experimental displacements.
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Figure. 5: Sample error distributions of a 16-node, 1 hidden layer neural
network model showing an almost zero-mean Gaussian distribution over
its modeling residues.
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Figure. 6: Correlation plots for a sample 16-hidden node neural network
model (best configuration}.

A feed forward NN with 16 hidden nodes produced errors
that were at least 14 times better than the linear surrogate.
Figure 6 also shows significantly better correlation
coefficients between NN predictions and ground truth, with
R being larger than 0.96 over training, validation, and test

datasets. The small disparity between training and test fits,
along with nearly zero mean Gaussian distribution of the
errors (Fig. 5), are further indications of successful NN
modeling.

FE Results

Surrogate Results Emr

kPa

Figure 7. Von Misess stress and the error of the surrogate at 2.5 s.

The overall inadequacy of linear models and the success of
NN surrogate models was expected from previous work
using surrogates to model joint kinematics [10]. While
these are both biological models, they focus on different
physical outputs. However, both datasets were well fitted
by NN's leaving zero-mean Gaussian errors, supporting the
choice of NNs as nonlinear data-driven surrogate models
for biomechanical simulations.

IV. CONCLUSION

It has been shown that a joint level MB model can
accurately predict tissue level stress by training a surrogate
model on a detailed tissue level FE model. While the
models used in this study consisted of simplified geometries
and model parameters, they demonstrate that it should be
possible to use accurate anatomical limb level models to
estimate tissue stress.
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