
  

 

Abstract—In order to approach human hand performance 
levels, artificial anthropomorphic hands/fingers have 
increasingly incorporated human biomechanical features. 
However, the performance of finger reaching movements to 
visual targets involving the complex kinematics of multi-
jointed, anthropomorphic actuators is a difficult problem. This 
is because the relationship between sensory and motor 
coordinates is highly nonlinear, and also often includes 
mechanical coupling of the two last joints. Recently, we 
developed a cortical model that learns the inverse kinematics of 
a simulated anthropomorphic finger. Here, we expand this 
previous work by assessing if this cortical model is able to learn 
the inverse kinematics for an actual anthropomorphic 
humanoid finger having its two last joints coupled and 
controlled by pneumatic muscles. The findings revealed that 
single 3D reaching movements, as well as more complex 
patterns of motion of the humanoid finger, were accurately and 
robustly performed by this cortical model while producing 
kinematics comparable to those of humans. This work 
contributes to the development of a bioinspired controller 
providing adaptive, robust and flexible control of dexterous 
robotic and prosthetic hands. 

 

I. INTRODUCTION 

HE multiple joints, tendons and muscles of the human 
hand allow the fingers to reach diverse spatial positions 
via various trajectories, resulting thus in a high degree of 

versatility which is critical in daily activities [1]. Such finger 
flexibility involves a complex neural control system where a 
particular trajectory has to be selected, planned and executed 
to account for various task constraints (e.g., accuracy) or 
changing environments (e.g., external perturbation) [1]. 

Thus, it is not surprising that in recent years the field of 
humanoid robotics has devoted substantial efforts to design 
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artificial anthropomorphic hands that are expected to achieve 
performance as close as possible to human hands. This work 
has tried to replicate hand/finger sensorimotor coordination, 
transformation and adaptability to the task demand as well as 
to the dynamics of unstructured environments [1],[2]. 
However, although multi-fingered humanoid hands are 
expected to have the versatility to perform fine and complex 
tasks that are impossible with a simple gripper, such multi-
fingered humanoid hands are a complex kinematic system. In 
most recently developed humanoid robotic hands (e.g., 
Shadow Hand [3], Robonaut Hand [4]) each finger is an 
independent kinematic chain with multiple degrees of 
freedom. Since finger mechanical design is based on their 
human homologues, the last two joints of the fingers are 
mechanically coupled by employing linkage specialized 
mechanisms such as the tendon or timing belt (e.g. [4],[5]).  

In order to command such complex kinematic 
mechanisms, a robotic controller has to learn the internal 
models of forward and inverse sensorimotor transformations 
(e.g., inverse kinematics) for reaching and grasping. 
However, this is a complex problem since the mapping 
between sensory and motor spaces is highly nonlinear and 
depends on the constraints imposed by the physical features 
of the robotic finger, such as the coupling of the two last 
joints, as well as by the changing environment [5],[6].  

In order to solve this inverse kinematics problem, two 
neural modeling approaches can be contemplated. The first 
one includes models that do not account for any particular 
neurophysiological substrate, resulting in very limited 
biological plausibility (e.g., [7]). The second approach 
proposes neural models that are biologically conceivable by 
incorporating particular brain structures and/or functions 
such as the cerebellum [8],[9] or the population vector coding 
processes that were previously revealed in motor/premotor 
areas [10]-[14]. Consistent with the second approach, 
recently a cortical network model able to learn the internal 
inverse kinematics model of a simulated anthropomorphic 
robot finger was proposed [13],[14]. 

Here, we aimed to test if such a cortical model was robust 
enough to learn the internal inverse kinematics model for an 
actual anthropomorphic humanoid finger having its two last 
joints coupled and controlled by a bio-inspired actuator such 
as artificial antagonist pneumatic muscles.  

II. MODELING APPROACH 

A. Cortical Network Modeling  

 The cortical architecture developed here extends previous 
models of reaching [10],[11] that functionally (i.e., no 
explicit modeling of the cortical circuitry was included) 
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replicate the population vector coding processes previously 
revealed in the motor and premotor cortices [15]. 
Specifically, our cortical model aims to learn the internal 
representations of the inverse kinematics of an 
anthropomorphic robotic finger by acquiring the mapping 
between spatial and joint displacements of the finger 
generated by the motor commands. Such an inverse 
kinematics mapping is learned by integrating i) visual 
information (fingertip motion, 3D targets localization); ii) 
proprioceptive information that encodes the current state of 
the humanoid finger (joint position); iii) the neural drive that 
conveys information about motor performance; iv) the goal-
related information involved in motor planning; and v) the 
motor error (e.g., computed by the cerebellum; [8-9]).  

The robotic platform employed here consisted of the 
ShadowHand™ finger [3] which is an anthropomorphic 
humanoid finger actuated by three pairs of pneumatic 
antagonist muscles (see Fig. 1). The first and second pair of 
muscles control the movement of adduction-abduction and 
flexion-extension of the metacarpophaleangeal (MCP), joint 
respectively. The third pair controls the movement of flexion-
extension for both the proximal interphalangeal (PIP) and 
distal interphalangeal (DIP) joints. Thus, when considering 
such an actuation system, this (three degrees of freedom) 
humanoid finger includes a mechanical coupling between the 
PIP and the DIP making the computation of the inverse 
kinematics particularly challenging [5],[6]. 

Specifically, the relationship between spatial and joint 
velocities of the robotic finger can be described as follow: 

 

 ΔθθJΔx            (1) 
 

where Δx, Δθ and J are the spatial and joint velocity and the 
Jacobian matrix of the humanoid finger, respectively. To 
obtain a joint rotation vector that moves the robotic finger at 
a desired spatial velocity, (1) can be rewritten as follow: 

 

 ΔxθGΔθ             (2) 
 

where G(θ) =J-1(θ) is an inverse of the Jacobian matrix. Here, 
the elements of the matrix G(θ) are denoted by gij(θ), where 
indices i and j refer to the joint space and the 3D workspace 
dimensions, respectively. Each entry of G(θ) was 
implemented by a radial basis function network that forms a 
‘context field’ that changes its activity when recognizing a 
particular joint configuration (θ) as inputs [16]. The output of 
each network gij(θ) is given by: 
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where k is the index of the basis function, the vector cijkm 
represents the distance between the input value θ and the 
center of the kth basis function, and Aijk is the activation of 
the basis function with a Gaussian function where μijkm and 
σijkm are the centers and the standard deviations along the 
dimension m of the kth Gaussian activation function, 
respectively. Each basis function is associated with a weight 
wijk, related to the level of the data ‘under its receptive field’. 

The set of weights zijkm allow for locally and linearly 
approximating the slope of the data ‘under its receptive field’. 
These weights were modified through a learning process 
described in the next section. 

B. Sensorimotor Learning  

The learning strategy consists of a sensorimotor exploration 
(or babbling) phase. Successive action-perception cycles 
were performed during which the motor commands were 
generated to execute various finger movements to reach 
random targets located in the 3D workspace (Fig. 1).  

 
Fig 1. Cortical model for inverse kinematics learning and control of the 
humanoid finger. (A) During learning, the Endogenous Random Generator 
(ERG) generates random angular displacements (ΔθR) resulting in spatial 
displacements (Δx) of the robotic finger. These displacements allow the 
cortical model to compute an estimation of angular displacements ( θ̂Δ ) and 
compare them to those randomly generated. (B) During performance, the 
cortical model executed 3D reaching movements to various spatial targets. 
A PID controller received as input the angular joints computed by the 
cortical model and provided the corresponding pressure to the pneumatic 
muscles to move the finger accordingly. A movement-gating GO signal (not 
shown) triggered voluntary motion [8]. 
 

Specifically, during each action–perception cycle, random 
joints angles (ΔθR; R denotes random movements) were 
endogenously generated from current joint configurations 
(denoted by θ) that were provided as inputs to the neural 
architecture as well as to the humanoid finger in order to 
reach the corresponding joint configuration. Simultaneously, 
the corresponding spatial displacements (Δx) of the fingertip 
in the 3D workspace was recorded by a motion capture 
system (Optotrak®) and then provided to the cortical model. 
Then, based on these spatial displacements, the cortical 
model estimated the joint angles ( θ̂Δ ) that were compared to 
the corresponding random joint movements, providing 
therefore an error signal that guided the adaptation of the 
network parameters (e.g., wijk, zijkm in (3); for further details 
on the model implementation, see [11]-[14]).  

C. Performance Assessment of the Cortical Model  

After the learning period during which the internal model 
of the inverse kinematics of the humanoid finger was 
encoded, the performance of the cortical model was first 
assessed by performing 3D center-out reaching movements 
towards 12 targets placed in three different planes. The 
targets located in the back (n=3), middle (n=6), and front 
(n=3) plane involved: i) a combination of flexion/extension 
and adduction movements, ii) only flexion/extension 
movements and iii) a combination of flexion/extension and 
abduction movements, respectively (Fig. 2B). This 
assessment was also conducted throughout learning to 
examine the evolution of the formation of the internal model 
of the inverse kinematics of the humanoid finger. In addition, 
the robustness of this cortical network model was assessed by 
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performing center-out reaching movements in the presence of 
perturbations. Namely, the humanoid finger was subjected to 
a sudden and brief perturbation representing a substantial 
increase of 10º of each estimated joint angle (i.e., computed 
by the cortical model) to the robotic finger during both the 
transient and steady-state phases of the motion. Finally, the 
capabilities of this cortical network model to control more 
complex motion with this humanoid finger were also 
investigated. Namely, the finger had to perform several 
reversal motions between the inside of two cylinders (~1 cm 
of diameter) without touching them, which required 
continuous and accurate control. The planning system for this 
task generated a set of four targets (2 outside and 2 inside 
each cylinder) that the finger had to successively reach 
continuously and accurately. Such a task combined flexion-
extension motion of the MCP and, most importantly, of the 
PIP and DIP for which it was particularly critical that the 
cortical model learned efficiently their mechanical coupling 
in order to fulfill the task demand. 

III. RESULTS 

The performance error and its variability (mean and 
standard deviation) were progressively reduced throughout 
the learning period for the targets located in the back, the 
middle and frontal planes. In particular, for all planes 
considered, the average reaching errors were equal to 25.98 ± 
11.76 mm, 2.20 ± 0.81 mm and 0.51 ± 0.29 mm for the early, 
middle and late learning periods, respectively (Fig. 2A). 
Although the overall errors were small, the highest error 
values were obtained for the back and the front plane. 

 
Fig 2. (A) Performance (average reaching error and standard deviation) of the 
cortical model during early, middle and late learning. (B). Reaching 
trajectories of the humanoid fingertip (the stick diagram represents the initial 
position of the humanoid finger) toward the spatial targets (rear (blue), 
middle (red) and front (black) planes) placed in the workspace.  

 
After learning, the cortical network was able to control 

the humanoid finger. The angular and linear displacements 
were sigmoid-shaped while the velocity profiles were 
generally single-peaked and bell-shaped. The trajectories 
were slightly curved and the targets were accurately reached 
(Fig. 2B and 3). The findings also revealed that the cortical 
model was robust to perturbations while performing reaching 
movements. Namely, when the perturbation was applied 
during both the transient and steady-state phases of the 
movement, the trajectory re-converged to the desired position 
and finally reached the target accurately. For instance, when 
the robotic finger had to reach a target placed in one of the 
most remote regions of the workspace by inducing a 
combined movement of flexion-extension and abduction-
adduction, the cortical model was able to reach the target 
with a similar accuracy (~1°) for both unperturbed and the 
same perturbed reaching movement (Fig. 4A-B). 

 
Fig 3. Typical angular (left column) and linear (right column) kinematics 
generated by the cortical model after learning. Here the target reached is 
indicated in Fig. 2B by a purple circle. Displacement and velocity profiles are 
depicted in the first and second row, respectively.  
 

 

 
Fig 4. (A-B) Response of the cortical model to two successive perturbations 
applied during the transient and steady-state phases of motion to a remote 
target by inducing flexion/extension and abduction/adduction motion. Effects 
of the perturbation on the trajectory (A) and the joints angles (B, computed 
by the model) of the humanoid finger. (C-D): Continuous and accurate 
performance (trajectories (C) and joint angles (D)) of the robotic finger 
during multiple reversal movements between two cylinders. 
 
Finally, the results also revealed that the cortical model was 
able to control the humanoid finger in order to perform 
continuously and accurately multiple reversal movements 
between two cylinders without touching them (Fig. 4C-D).  

IV. DISCUSSION 

A cortical network architecture functionally similar to the 
motor and premotor cortices was able to learn an internal 
model of the inverse kinematics of a humanoid robotic finger 
that included a mechanical coupling between the PIP and the 
DIP joints as in humans. Specifically, this cortical model was 
able to: i) produce similar linear and angular kinematics 
features as those observed in humans for finger motion and 
grip production [1],[17]; ii) maintain an accurate and robust 
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control in the presence of perturbations and iii) perform 
relatively complex motions such as multiple reversals via 
continuous and accurate movements. 

More specifically, once the inverse kinematics was 
learned, the cortical model was able to control the robotic 
finger in order to reach accurately the targets exhibiting 
sigmoid-shaped angular and linear displacements as well as 
single-peaked and bell-shaped angular and linear velocity 
profiles. For some targets a secondary (small) peak was 
observed in specific joints, which was in accordance with 
results from human studies [1]. Furthermore, consistent with 
previous experimental studies, the cortical model produced 
slightly curved trajectories [1],[17]. Overall, the present 
kinematics results obtained with a physical humanoid robotic 
finger confirm and extend those previously obtained in 
simulations [13],[14]. Although the kinematics obtained both 
in simulation and during this robotic experiment, appear to be 
comparable to those observed in humans, further testing is 
currently in progress to directly compare these kinematics 
with their human counterparts while performing the same 
task (e.g., center-out reaching, reversal movements). 

In addition, this cortical network model was robust to 
sudden perturbations of substantial magnitude. This is an 
important and desirable feature since in daily tasks humanoid 
hands/fingers may be subjected to various types of 
perturbation during finger reaching and grasping, especially 
in unstructured environments [2]. Also, the changes observed 
in the joint angles computed by the cortical model under 
perturbed conditions indicate that the perturbations were not 
corrected through feedback but compensated by the cortical 
model that changed its on-line activity to re-converge to the 
targets. Further assessment of robustness is currently 
underway, including perturbations applied for a longer time 
period. Finally, the model was able to perform more complex 
tasks than single reaching motions, such as continuous 
multiple reversal movements under accuracy constraints. The 
good performance with such a task suggests that our cortical 
model is able to perform ecologically valid finger movements 
involving fine manipulations. In particular, these findings 
suggest that our cortical neural network learned accurately 
the coupling between the PIP and the DIP, and provides 
therefore a biologically-inspired solution for the inverse 
kinematics computation applied to humanoid hands/fingers 
that include a coupling of the two last joints. Such a cortical 
architecture provides a possible viable on-line alternative 
solution to the inverse kinematics problem, something that is 
particularly challenging for robotic fingers including coupled 
joins without using look-up tables combined with linear 
interpolation [5],[6].  

Overall, the current findings suggest that our cortical 
model can reproduce accurate, flexible and robust 
ecologically valid finger reaching movements when 
controlling an actual anthropomorphic robotic finger. This is 
important since such a cortical model could provide a robust, 
accurate and flexible bio-mimetic controller for humanoid 
finger/hand motions providing thus a unique manual ability 
and versatility that is critical for many daily activities [1].  

However, future work will need to further assess the 
capabilities of this cortical network to robustly perform other 
complex ecologically valid tasks such as typing, drawing and 

tracking tasks as well as its flexibility during on-line control 
for targets switching during on-going movements. 

Although the focus of the present work was the 
kinematics, future work will also focus on the dynamics of 
the fingers since, for now, our cortical network model does 
not include any component accounting for biomechanical 
dynamics (e.g., gravity, inertia). This could be studied by 
incorporating a model of the cerebellar structures that have 
been considered to encode internal models of the inverse 
dynamics [8], [9]. The long term goal of this research is to 
design a bio-mimetic controller providing adaptive, robust 
and flexible control of dexterous robotic/prosthetic hands. 
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