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Abstract— Recent studies have shown the success of face
recognition using low resolution prosthetic vision, but it requires
a zoomed-in and stably-fixated view, which will be challenging
for a user with the limited resolution of current prosthetic vision
devices. We propose a real-time object detection and tracking
system capable of fixating human faces. By integrating both
static and temporal information, we are able to improve the
robustness of face localization so that it can fixate on faces with
large pose variations. Our qualitative and quantitative results
demonstrate the viability of supplementing visual prosthetic
devices with the ability to visually fixate objects automatically,
and provide a stable zoomed-in image stream to facilitate face
and expression recognition.

I. INTRODUCTION

The normally sighted eye consists of a high resolution
fovea of 0.3-2 degrees, which typically performs high acuity
tasks such as face recognition, facial expression recognition
and reading, with peripheral vision which reduces exponen-
tially in terms of retinal cell density from the fovea [16].
Eye movements are used to bring target objects to the fovea,
maintaining a stabilized fixation and enabling the fovea to
view an object long enough that it produces a stable, rather
than blurred image [10]. It has been shown that a longer
stabilized fixation boosts the performance of high acuity
tasks, e.g., face recognition [5], [11].

The state-of-the-art prothetic vision shares a similar, if
not more challenging, task as the human vision system in
terms of maintaining fixation. To date, for the visual percept
resulting from electrical stimulation, called phosphenes, the
largest numbers reported are around 100 (eg., [1]), while
a large set of functional results are demonstrated on a
60 electrode array [6]. This small total number of visual
field elements creates a difficulty for high acuity tasks as
it would appear necessary to devote all the resolution to
the task at hand. This leaves no surrounding peripheral
visual field to maintain fixation in the manner of normal
human vision. For example, in face recognition, Thompson
[13] demonstrates that it is possible to discriminate a small
number of faces to more than 90% accuracy based on just
32x32 phosphenes, with performance dropping significantly
with resolution reduction. Here the entire field of view was
taken up by the face – without the typical human visual
fixation mechanism, this would be difficult to achieve in
a normal human environment. Figure 1-A shows a typical
example of indoor face identification scenario, in which the
input from camera is displayed in normal and zoomed-in
ways. Note that, using about 1000 simulated phosphenes,
we can barely see the person in the whole image.

*All authors are with NICTA, Canberra ACT, Australia and CECS,
Australian National University, Canberra ACT, Australia.
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Fig. 1. (A) Simulated phosphene rendering of an image of a scene
and an object inside.Top: input image of video camera; Bottom: simulated
phosphene rendering of the whole image and the face with 30x30 resolution.
(B) An overview of our face fixation system for visual prothesis.

Many image processing methods have been applied in
bionic eye devices to address the problem of the limited view
or resolution of retinal implants, such as Gaussian filtering,
edge extraction, image transformation [3], [4], [18]. A range
of functional vision tasks, including object recognition and
navigation, can be facilitated by these image processing
steps. However, the existing experimental evaluation is usu-
ally constrained to laboratory environments with ideal setup
of viewing angle/range [14], [18], which is unrealistic in
daily activities. In particular, recognizing objects and faces
usually requires zooming on the target object and then
applying a transformation to render the full object on the
device. This fixation mechanism generally involves higher-
level visual concepts such as object. As such, simple image-
based processing will not be able to provide such mechanism.

In this paper, we propose a visual object-based fixation
system in which a broader image from the input camera
provides the peripheral image, and computer vision tech-
niques are used to provide the ability to zoom and maintain
fixation on specific objects. Our system holds the dynami-
cally moving object centered in the viewing area to allow
the viewer the possible better recognition performance that
a dynamic view offers. In particular, we demonstrate a face-
based fixation system for face recognition, as restoring the
ability to recognise faces and facial expression are known
to be key requirements for a visual prosthetic [7]. Our
design is based on recent progress on face detection and
tracking in computer vision [8], [12], in which we employ
an improved boosted cascade classifier for face detection
and incorporate temporal dynamic information to stabilize
detection output. A systematical evaluation on a benchmark
dataset shows zoomed faces are kept still in continuous
videos, and resulting simulated phosphene images are much
more stable than baseline methods.

The paper is organized as follows. In Section II, we
introduce our system and the details of the proposed fix-
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ation algorithm. The experimental evaluation is described
in Section III in which we compared with the baselines
qualitatively and quantitatively. Finally, we conclude the
paper in Section IV.

II. OUR METHOD

Our system captures visual input by a standard camera,
and the input frames are fed into a laptop with our video
processing and simulated phosphene image display software.
The output of the system is a phosphenized face image shown
on a head-mounted display or computer screen, and an option
button is also provided to user so that a user can choose
which face is targeted and how much zooming is needed.
An overview of our method is shown in Fig 1-B.

A. Face detection and tracking

The face detection component employs a similar approach
as in [15] that takes a fixed-size square window at every
position on the image plane and classifies the image patch
within each window as ’face’ or ’non-face’. This process
is repeated on several gradually down-scaled images so that
faces with different sizes can be detected. We adopt an im-
proved cascade boosted classifier, referred as Lacboost [12],
for the detection task. This classifier provides a superior
detection performance to Adaboost and requires a smaller
number of image features, which is critical for real-time
processing in complex real-world scenario. The key idea of
Lacboost is to reuse the weak learners from previous stages
in the cascade pipeline, and tune the model parameters with
an asymmetric cost function that fits better in detection tasks.

Despite the high detection rate in the frame-based image
processing, it is still insufficient for a visual prothesis due
to lack of temporal stability, background distraction, and
pose variation. To overcome these issues, we integrate the
face detector with an online visual tracking component in a
Bayesian framework. The tracking component incorporates
temporal smoothness constraint and a face appearance model
for precise localization. The overall module is illustrated
in Figure 2 with an example of detection and tracking
integration.

More specifically, let xt = (xt, yt, st)
T denote the posi-

tion and scale of a target face at time t, and It is the input
image frame. As in [8], we are interested in computing the
posterior of the current state xt given the image sequence
I1:t = {I1, · · · , It}. The Bayesian filtering approach com-
putes the posterior in a recursive way,

P (xt|I1:t) ∝
∫
xt−1

P (xt|xt−1)P (It|xt)P (xt−1|I1:t−1)dxt−1

(1)

where P (xt|xt−1) is the transition probability imposing
temporal smoothness, and P (It|xt) is the data likelihood at
time t. We design these two model components as follows.

The data likelihood integrates a generic face detection and
an appearance-based person-specific face matching proce-
dure. In the generic face detection, we represent its result
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Fig. 2. Detection and tracking algorithm: integration of detection result
and edge template based tracking in our method.

as a mixture model:

Pd(xt|It) =
∑
ot

P (xt, yt, st|ot)P (ot|It) (2)

where ot is a binary indictor variable specifying whether
the face is visible in image frame It. For face detection,
we transform the detection score to the range of [0, 1] so
that it can be viewed as the probability of P (ot = 1|It).
Let the detection window be x̂dt , we assume the conditional
probability of state given visibility has the form

P (xt|ot) ∝

{
K(xt, x̂

d
t ;σd) if ot = 1

ε if ot = 0
(3)

where k(x, x̂;σ) is a Gaussian kernel function
exp(− ||x−x̂||

2

σ2 ) and ε is a small positive constant (ε� 1).
For the appearance-based face matching component, we

build a weighted edge template model of faces based on the
first detection result. Given the detected face window, we
normalize it into 50x50 and apply Canny edge detector to
extract the edge template Me. The edge template is also
associated with a weight mask We that emphasizes the
central area of the detection window. We update the edge
template in an online fashion such that it can adapt to the
pose changes. Specifically, we define the weight mask as a
two-dimensional Gaussian on the normalized face window
and its standard deviation equals to the half of window size.
An example of matching score can be seen in Figure 2.

During face fixation at time t, we search for the best
matches of the template with the edges in input frame
It in the neighborhood of the face detection result x̂dt as
well as of the localization result x̂t−1 at t − 1 (see the
following for its definition). We denote the search region as
Nt. The matching distance is defined by a weighted Chamfer
distance [2], which can be computed efficiently using a
distance transform:

x̂at = arg min
x∈Nt

DChamf (Canny(Rt(x)),Me;We)

= arg minDT (Canny(Rt(x))) · (Me �We) (4)

where DChamf is the Chamfer distance and Rt(x) are the
image windows in Nt. DT represents the distance transform.
We use · for inner product and � for element-wise product
between vectors. Our system searches three different scale
factors st = {st−1−δ, st−1, st−1+δ} where st−1 is the scale
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of a target face at previous time t − 1. δ is the discretized
scale step.

The minimum matching results is represented by a Gaus-
sian distribution, Pa(xt|It) ∝ K(xt, x̂

a
t ;σa), and overall

data likelihood is defined by combining the above two
components probabilistically:

P (It|xt) ∝ Pd(xt|It)Pa(xt|It) (5)

We adopt a simple linear Gaussian transition probability
P (xt+1|xt) ∝ K(xt+1,xt;σp) to enforce the temporal
smoothness, where σp controls the temporal smoothness.
In order to compute the prediction in real time, we em-
ploy the following approximation because the posterior
P (xt−1|I1:t−1) is usually peaky around its mode x̂t−1:

P (xt|I1:t) ≈ P (xt|x̂t−1)P (It|xt) (6)
x̂t = arg maxP (xt|I1:t) (7)

Note that we combine image cues from multiple sources to
maintain the robustness and stability of fixation.

B. Display in simulated prosthetic vision

Detected face regions are cropped and normalized to
target size for display on a boinic eye device, including
retinal implants, head-mounted displays or computer screens
for simulation. In this paper, we report our results based
on the simulated phosphene display that commonly used
in retinal implants simulation [14]. Our phosphene image
representation is based on Gausssian kernel profiles placed
on a 35x30 rectangular grid. The center value and standard
deviation of each Gaussian kernel are proportional to the
pixel intensity at its center position. For each phosphene, we
limit the intensity value to 6 bit. We refer the readers to [9]
for more details.

III. EXPERIMENTAL EVALUATION

A. Dataset and Setup

Our quantitative experimental evaluation is based on a
publicly available YouTube face video dataset1 [17]. The
video clips involve camera and head movements which
induce changes in face position and orientation, such as
side-to-side, nodding, and tilting movements. We categorized
those video clips into 5 classes according to the maximum
pose variation in each clip. Each class spans 15-degree
intervals and we consider 5 classes as ([0◦, 15◦], [15◦, 30◦],
[30◦, 45◦], [45◦, 60◦] and more than 60◦). We choose 20
clips per class in this experiments. To make the comparison
consistent, we adjust the starting time of each sequence such
that in the first frame, the faces show their frontal view, and
limit the length of each video clip to 50 frames.

We implemented our software system on a Laptop with
Intel Core i7-2620M CPU running at 2.7GHz. Overall, our
system runs in realtime and generates output at 18 frames per
second on average. We also implement two baseline methods
of face detection/tracking for comparison purposes. The first
is the classical Viola-Jones face detector [15] applied to each

1Available from http://www.cs.tau.ac.il/˜wolf/ytfaces/

frame. The second is a color-histogram based tracking, which
builds a face appearance model from an initial face detection.

To measure the fixation accuracy, we compute the distance
between the center of face fixation outcome and the center
of the ground truth (manually labeled) on the image plane,
normalized by the size of ground truth face windows. The
average distance on the dataset will indicate how close the
predicted face locations are to the ground truth. Specifically,
we normalize the image plane such that the ground-truth
face window has a size of 50 × 50 across all the instances.
Thus the average accuracy score for a clip with T frames is
computed as follows.

FA =
1

T

T∑
t=1

√
(x̂t − xgt )2 + (ŷt − ygt )2/sgt × 50 (8)

where (xgt , y
g
t , s

g
t ) is the ground truth at frame t. We also

average over clips to obtain the mean fixation accuracy F̄A.

B. Results and Discussion

Our system can reliably detect and robustly track faces
within distance of 0.5 to 5 meters in a normal indoor
environment using a consumer camera. In Figure 3, we show
three examples of face fixation results of our system. The
first example is taken in an office environment and shows
four individual frames across a live sequence with marked
face areas in high resolution are demonstrated. The second
example is from the Youtube dataset. For each we also show
the resulting simulated phosphene images. In these examples,
we can see that the zoomed face window provides rich and
informative cues for identity and expression recognition in
the restricted resolution phosphene images, which would be
missed by viewers if we could not fixate on the face area.

We also show quantitative results of detection and track-
ing stability and the comparison with other baseline face
localization methods. The performance is measured by the
average face localization accuracy F̄A as in Equation 8,
which accounts for different sizes of face instances. For the
detection-only method, if it fails, we use a default left-upper
corner position of the image plane as its output. The overall
average scores across the whole evaluation dataset are shown
in Table I. Our method yields improved fixation performance
compared to the baselines: the average fixation precision of
our system is 4.07 pixels deviation from the manual labeling,
showing 47.16% and 12.74% improvement over two base-
lines respectively. Figure 4 shows the resulting simulated
phosphene images from another example in the Youtube
dataset. We notice that the detector alone often failed to find
the face in the sequence due to facial orientation. The tracker
can follow the facial regions most of time but often drifts
away from the center of face (in the second example, it is
shifted to the person’s neck) due to background distraction
or clutter. On the other hand, our system generates stable
phosphene face images in these challenging conditions.

IV. CONCLUSION

We have presented a prosthetic vision eye fixation system
in which a full-view image from a high-resolution camera
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Fig. 3. Examples of face fixation in video sequences. Left: face fixation at varying distances. Right: fixation with background distraction and clutter.

TABLE I
THE COMPARISON OF OUR SYSTEM VS. BASELINES W.R.T FIXATION

ACCURACY IN PIXELS.

Accuracy Detector Tracker Our System
F̄A 6.00 ± 11.49 4.59 ± 2.79 4.07 ± 2.32
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Fig. 4. Example of comparison with baselines. The detection output in
the second row (black indicates detection failure), tracker result at the third
row, and our system output in the last row.

provides the peripheral view, and state-of-the-art computer
vision techniques is used to provide the ability to zoom and
maintain fixation. Based on a series of simulated experiments
on a natural face video dataset, we demonstrate that our
visual object-based fixation system is capable of detecting
and tracking faces under various challenging environments,
and generating a consistent phosphenized face image se-
quence to compensate for camera and face motions. This
result, we believe, will be particularly useful for facilitating
face recognition, and restoring the ability to recognise facial
expression.
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