
  

  

Abstract— Extracting physiological signals to control 

external devices such as prosthetics is a field of research that 

offers great hope for patients suffering from disabilities.  In this 

paper, we present an algorithm for isolating control signals 

from peripheral nerve cuff recordings.  The algorithm is able to 

extract individual control signals from a mixture of source 

signal activity while maximizing SNR and minimizing cross-talk 

between the control signals.  Based on fast independent 

component analysis FICA and an adaptation of Champagne, the 

proposed algorithm is tested against previously published 

results obtained using beamforming techniques in an acute 

preparation of rabbits.  Preliminary results demonstrate an 

improvement in performance. 

I. INTRODUCTION 

Research into the extraction of physiological source 
signals from human subjects to control external devices 
offers numerous possibilities to improve the lives of disabled 
patients.  In this paper, we develop an algorithm to extract 
control signals from the peripheral nerve using the Flat 
Interface Nerve Electrode (FINE).  Peripheral nerve 
activities offer several advantages over brain signals: (a) the 
functional anatomy of the peripheral nerves are known and is 
considerably more structured and simpler.  This can lead to 
less interferences and more stable source signals. (b) The 
physiological functions of the individual nerves are known 
facilitating the generation of controlled signals by human 
subjects.  (c) The implant procedures are less invasive 
compared to ECoG.  The extraction of viable control signals 
from the peripheral nerve is a challenging task that requires 
the isolation of individual sources from recordings that 
consist of a mixture of source activity contaminated with 
noise and interference.  In this paper, we present a control 
signal extraction algorithm using fast independent 
component analysis FICA [2] as well as an adaptation of 
Champagne [3, 4].  The algorithm is designed to isolate 
potential control signals from a mixture of peripheral nerve 
source activity while both maximizing the SNR of the 
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extracted control signals and minimizing the crosstalk 
interference between them.     

II. METHODS 

Given a segment of recorded nerve activity Y
KxN

, where N 
is the number of time points and K is the number of electrode 
contacts, it is our objective to learn a set of spatial filters 
Fj

1xK
  that can each extract a corresponding control signal Xj 

from the recorded signals Y.  

 Xj = FjY 

A.  Data Collection 

 In this section, methods for acquiring Y are described.  

New Zealand White Rabbits are anesthetized with 20-50 

mg/kg IM ketamine and 5 mg/kg IV diazepam and 

maintained with 60 mg/kg IV alpha-chloralose (followed by 

one quarter dose every 2 hours or as needed) and .02 mg/kg 

IM buprenex.  All protocols are approved by the Case 

Western Reserve University IACUC.  Recordings are made 

from a novel 16-channel tripolar FINE placed on the sciatic 

trunk near the popliteal fossa.  The FINE offers improved   

recording selectivity by reshaping the geometry of the nerve 

[5, 6].  The signals are AC coupled, amplified, multiplexed 

and low-pass filtered at 5 kHz by an RHA1016 preamplifier 

chip (Intan Technologies, Utah). A National Intruments data 

acquisition card is used to perform A-to-D conversion and 

sampling at 15 kHz/channel. Tripolar stimulating FINEs are 

placed on the Tibial and Peroneal branches of the Sciatic 

nerve, distal to the recording cuff.  5kHz sinusoidal electrical 

stimulations are applied to each individual nerve branch 

separately as well as together to generate pseudo-

spontaneous source activities [7] where the Peroneal/Tibial 

activity each present a potential control signal, DX = 2.   

Recorded signals are post-processed using an 800Hz – 3 kHz 

band-pass filter in order to reduce any non-essential EMG 

and stimulation artifacts.      

B.  Spatial Filter Construction and Validation 

During training, it is unlikely that individual sources 
within a peripheral nerve can be activated separately.  
Instead, the spatial filters F must be learned from signals 
containing a mixture of source activity.  Therefore, in this 
study, the spatial filters F are built only  from data obtained 
where the Tibial and Peroneal branches are both activated 
simultaneously.  Segments of the data where the Tibial and 
Peroneal branches are activated individually are only used to 
quantify the quality of the resulting spatial filters Fj using the 
SNR defined as  
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 SNR(Fj) = 10log(P(Xj)/Pbackground) 

as well as the cross-talk ratio CTR defined as 

 CTR(Fj) = 10log(P(Xj)/P(Xi≠j)) 

 where P is power.     

Given data recording Y consisting of four separate periods in 

the following order, YT, YTP and YP shown in Fig. 1, we first 

follow the methods described in [3] to de-noise YTP to yield 

YTPDe using only the information in Ypre and YTP.  The nerve 

recordings YTP are modeled as a combination of source 

signals S interference signals U  and random noise V.  

 Y = AS + BU + V 

The source and interference signals are assumed to be 

independent Gaussian distributions with zero mean and unit 

precision.  The random noise term V is described by a 

diagonal precision matrix CV.  Given an initial choice of the 

number of sources and interferences to be learned, the 

algorithm utilizes variational Bayes expectation 

maximization to learn the set of model parameters that best 

fit the data covariance matrix CY by 

 CY ≈ AA
T
 + BB

T
 + CV 

using Ypre to first learn the interference and noise parameters 

B and CV then fixing these parameters while learning the 

remaining parameters using YTP with YTPDe = AX as a 

denoised version of YTP.  

During the next step, FICA is used to decompose YTPDe 
into K number of independent components ICj=1:K such that 

 YTPDe = WIC 

where W is the mixing matrix.  It is our hypothesis that some 
of the ICj will represent individual source activity Sj where 
it’s either Tibial or Peroneal and that different ICj composed 
mostly of the same source activity will have similar spatial 
distributions.  With this in mind, spatial filters FICj are 
constructed for each individual WjICj using Champagne [4]. 
The Pearson’s correlation coefficient R is then computed 
between each pair of (FICj and FICi≠j).  For the pair that 
yielded the highest R value, the components are combined 

together Wj,iICj,i and a new FICj+i is learned.  This process is 
iterated until a minimum correlation threshold is reached.  
The final FICj with minimum correlation between each other 
can then be considered as good candidates for extracting 
useful control signals.   

  In constructing spatial filters to extract control signals, 

each spatial filter not only have to isolate the control signal it 

is responsible for from both background noise and 

interference, it must also be able to reject the activity from 

other source signals which also act as interferences for the 

current control signal of interest.  To accomplish this, we 

have developed an adaptation of the Champagne algorithm.  

Briefly Champagne is a source localization algorithm that 

models Y as 

 Y = LSpix + e 

where Spix is a M by N matrix.  M is the number of pixels 

within the cross section of the FINE finite element model.  

Each pixel is a potential source that have influences on the K 

FINE contacts described by the lead field matrix L
KxM

 . The 

various noise and interference that exist within the system 

are described by e.  Detailed explanation of the lead field 

matrix L can be found in [1].  In short, a rectangular finite 

element model of the FINE positioned over an empty 

epineurium enclosing a homogeneous volume conductor is 

created, Fig. 2a. 

The FINE, measuring 5mm by 1.5mm, consists of 16 

contacts with contacts 1 to 8 arranged from top left to top 

right and contacts 9 to 16 from bottom left to bottom right.  

The cross section of the FINE is divided into 82 by 208 

pixels, which leads to M = 17056.  In Fig. 2b, the 

sensitivities of the four contacts (1, 6, 11 and 16) to the M 

pixels are plotted.  

To estimate the source locations Champagne introduces the 

following likelihood model based on (7) 

a 

 
b 

 
Figure 2. (a) The finite element model of the FINE electrode 

measuring 5mm by 1.5mm and divided into 82 by 208 pixels [1]. (b) 

The pixel-sensitivity described by the lead field matrix L for electrodes 

1, 6, 11 and 16. 

 
Figure 1. Illustration of the recorded peripheral nerve activity.  The  

average signal from the 16 contacts is plotted.  Ypre is the background 

activity, YT is period of Tibial stimulation, YTP is period of Tibial and 

Peroneal stimulation and YP is period when only Peroneal stimulation 

occurs. 
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Figure 3.  (a)Average power across the 16 contacts.  (b) Power of 

Filter1 output which extracts the Tibial activity.  (c) Power of Filter2 

output which extracts Peroneal activity. (d) Power output from Tibial 

filter constructed from [1]. (e) Power output from Peroneal filter 

constructed from [1]. 

 

 
Figure 4.  SNR and CTR comparison between the average contacts 

signal, the output signal obtained from the proposed algorithm and the 

output signal obtained from the filters constructed in [1].   

 

 p(Y|S)  exp(-0.5║Y – LSpix║
2
Ce) 

 

where ║Q║C = (trace[Q
T
C

-1
Q])

1/2
 and 

 Ce = BB
T
 + CV.   

The sources Spix are modeled as independent zero mean 

Gaussian distributions with covariance CSpixi for each pixel 

Spixi.  The approximation of CS infers the pixel locations 

where the sources most likely reside.  When this 

approximation is complete, spatial filters F can be 

constructed as  

 F = CSL
T
(Ce LCSL

T
)

-1
. 

  To learn CS we minimize the following cost function 

 L(CS) = trace[CYCE
-1

] + log(│CE│) 

where CE = Ce + LCSL
T
 and CY = YY

T
/dt.  In order to 

construct spatial filters that minimize cross-talk interference 

between control signals we propose to modify (8) to   

 Ce = BB
T
 + CV + Cint   

where Cint measures the covariance of the interfering source 
signals.  In this study, the mixing matrix W for the final IC 
can be used such that Cint = WW

T
.  For W to be accurate, 

each ICj should be normalized to have unit variance. 

III. RESULTS 

  Fig. 3 illustrates the implementation of the algorithm. 

Filter1 and Filter2 are constructed using the methods detailed 

above.  The original recording is then filtered through each 

filter and the results plotted.  In Fig. 3a, 130 ms running 

power average is plotted for the average signal recorded 

across the 16 contacts.  Fig. 3b and 3c plots the output of 

Filter1 and Filter2 separately.   From the results, it is clear 

that Filter1 extracts the Tibial activity and rejects the 

Peroneal activity while Filter2 extracts the Peroneal activity 

with some crosstalk from Tibial activity.  Fig. 3d and 3e are 

the power outputs of the Tibial and Peroneal filter 

constructed in [1].  While these filters also perform very 

well, they are constructed from activating each individual 

nerve branch separately using 130Hz stimulation that 

generates strong periodic compound action potentials that 

are then time averaged to eliminate noise.  This is an ideal 

signal that cannot be duplicated in realistic environments.  In 

Fig 4., the SNR and CTR are compared between averaging 

the signals across each contact, the output of Filter1 and 

Filter2 obtained from the proposed algorithm and 

PFilter/TFilter obtained from the beamforming strategy in 

[1].  It can be observed from the figure that the highest SNR 

is obtained from simply averaging the contacts together.  

However signals obtained with this method are useless due 

to crosstalk interference across the sources.  On the other 

hand, both [Filter1, Filter2] and [PFilter, TFilter] have 

reduced SNR but with significantly better CTR.  Since either 

a low SNR or CTR will negatively impact the utility of the 

extracted control signals, a balance between SNR and CTR 

offers the best performance.    

IV. CONCLUSION 

In this paper, we proposed a novel source signal extraction 

method based on the Bayesian algorithm Champagne and 

FICA.  The algorithm is able to extract control signals from a 

mixture of recorded source activity while maximizing the 

SNR and minimizing the crosstalk between sources.  

Currently statistical significance cannot be computed due to 

the preliminary nature of the data.  Future work will include 

further trials using the proposed algorithm. 
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