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Abstract— We propose to use Just Noticeable Difference
(JND) as the principle in visualizing results for image pro-
cessing modules for prosthetic vision. Current Bionic Eye
hardware implants have limited levels of separately perceivable
brightness (i.e., low dynamic range in visualizing images).
Therefore, it is important to ensure that the critical contrast
must remain perceivable by maintaining of visual differences
in downsampled images with reduced dynamic range. JND
provides a mathematical framework for these psychophysics
events. An increase by 1 in JND space corresponds to the
smallest detectable change in visual space (i.e., just noticeable).
Combining this principle and the dynamic range constraint, we
cast the visualization problem to a linear optimization problem,
which enables us to generate optimal visualization images.
We demonstrate the usefulness of this principle on visualizing
ground-plane segmentation. Experiments show that the pro-
posed principle effectively provides critical visual information
at different dynamic ranges, and generates consistent results
for image sequences.

I. INTRODUCTION

Visual processing for Bionic Eye aims to provide assistive
modules based on computer vision techniques. A number of
algorithms have been developed for this purpose. Ground
plane segmentation [6], saliency [9], and face zooming [2]
have demonstrated effective assistance for individuals with
vision impairment.

A central question in all visual processing modules is how
to augment results for various computer vision algorithms.
Current hardwares for prosthetic vision have both limited
dynamic range and levels of separately perceivable brightness
[5]. Therefore, contrast may be lost during downsampling
and dynamic range reduction. Any visualization for integrat-
ing these modules must be properly designed to ensure that
critical contrast must remain perceivable by maintaining of
visual differences in processing.

Many visual processing modules output so called “impor-
tance maps”. The perception of these “important regions”
must be preserved at different dynamic ranges. For instance,
objects must be visually different from their background,
given the ground-plane segmentation [6]. Therefore, it is
ideal to augment these importance maps to the original image
to highlight the importance contrasts while keeping other
regions unchanged.

Fig. 1 illustrates such an example. Current state of the
art in ground-plane segmentation effectively identifies the
ground region (white pixels in Fig. 1d, computed from the
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Fig. 1. (a) Intensity image; (b) Depth representation from a stereo camera;
(c) Rendering (b) using a 30×35 phosphene rendering with 6 bits dynamic
range; (d) Ground-plane segmentation by [6]; (e) Ground plane of (b) was
manually set to a fixed value; (f) Rendering (e) using the same phosphene
representation as (c); (g) red: pixels in the plane region, blue: boundary
pixels of the ground region, green: pixels inside the ground region; (h)
Optimal augmentation by our proposed method; (i) rendering (g) using the
same phosphene rendering as (c).

depth map Fig. 1b of the scene Fig. 1a). A straightforward
visualization strategy is to manually set the ground region
to a fixed value (Fig. 1e). In this resolution and dynamic
range, the obstacles pop up undoubtedly. However, this does
not guarantee automatically the contrast is still visible in
low resolution and low dynamic range phosphene rendering
(Fig. 1f), and a Bionic Eye user may lose its perception of the
slope of the ground as well. Fig. 1g would be more preferred,
where values of pixels in the ground region are reduced
accordingly while obstacles are noticeable in phosphene
images (Fig. 1h).

We propose to use Just Noticeable Difference (JND) as the
principle in rendering results for visual processing modules
for Bionic Eye. An increase by 1 in JND space corresponds
to the smallest detectable change in visual space (i.e., just
noticeable). Combining this principle with the dynamic range
constraint in Bionic Eye, we are able to ensure critical
information surviving during visual processing.

In this paper, we use depth representation to illustrate
the usefulness of the proposed principle. Recent work has
reported the use of surface depth as an alternative scene
representation of intensity images [1]. This is achieved by
computing stereo disparities between two space-separated
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parallel cameras. In general, bright means close and darker
means further away. We will demonstrate how this JND
transforms the visualization problem to an optimization prob-
lem in Sec. II. We then apply this principle to augment results
for ground plane segmentation (Sec. III). Experiments in Sec.
IV show that the visualization guarantees visual differences
for critical regions.

II. JND: THE PRINCIPLE

JND refers to methods that use psychological functions
in visualization. Visual adaptation [7] and power law were
exploited in early work. These effectively model the human
visual system, thus JND has been adopted to many fields
(e.g., tone mapping in high dynamic range [8]).

Just noticeable difference is originally from the Psy-
chophysics community, with a strong mathematical flavour
in its definition. Assuming there is a patch that has a critical
contrast we want to preserve at certain dynamic range, we
define the following two constraints:

1) If its contrast is larger than the JND, or
2) if its contrast is larger than 1 level of dynamic range.
We now formulate these two intuitive constraints in the

solution space. In this paper, we assume the intensity range
is normalized to 1. The goal is to “compress” the levels of
brightness from 64 in the orignal depth map to an arbitrary
k (k < 64) in the phosphene rendering.

Denote I as a gray scale depth representation patch (e.g.,
any 5× 5 region) that has n pixels and c is its center pixel
index. The center pixel is “just noticeable” if and only if:∣∣∣∣∣Ic −

1
n−1

∑
j 6=c Ij

1
n−1

∑
j 6=c Ij

∣∣∣∣∣ ≥ δ, (1)

where j = 1...n, and Ij is the pixel value for the jth pixel.
δ is the JND value, which is normally small (e.g., 0.1).

Eq. 1 can be easily extended to any linear contrast filter.
For simplicity, we will stick to the simpler formulation (Eq.
1) in this paper.

The contrast of I can still be perceived at k levels of
brightness if:

Ic −
1

n− 1

∑
j 6=c

Ij ≥
1

k
, (2)

Thus, we state that this patch I is “just noticeable” under a
quantization 1

k if and only if it satisfies Eq. 1 and 2.

III. CASE STUDY: VISUALIZING GROUND-PLANE
SEGMENTATION

A. Brief introduction to visualizing ground-plane segmenta-
tion

In mobile robot navigation, ground-plane modelling is
commonly employed to determine the traversability of the
immediate space. Recently, McCarthy and Barnes [6] pro-
posed a surface detection and segmentation scheme based on
the examination of iso-disparity contours. Using iso-disparity
analysis for ground surface segmentation, the method infers
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(e) (f) (g) (h)
Fig. 2. An example. (a) Scene; (b)-(d): Depth map, direct dynamic
range reduction, and its phosphene rendering, respectively. The phosphene
is rendered using a 30× 35 regular grid at k = 8 levels of dynamic range;
(e) Ground region of (a); (f)-(h): Our augmented depth map, its dynamic
range reduction, and phosphene rendering, respectively.

all traversable space in the image, from which all non-
traversable surfaces (e.g., walls, obstacles) are also obtained.

The goal of the visualization is to augment depth-based
phosphene scene rendering to provide both a cleaner visual-
isation of the ground surface, and to enhance the distinction
between traversable and non-traversable space; in particular,
small ground surface obstructions. This goal can be inter-
preted as filling in new values to the traversable regions
such that the critical difference between traversable and non-
traversable space is noticeable in low resolution low dynamic
range phosphene images.

B. Visualizing ground-plane segmentation using the JND
principle

Define X as the solution of visualizing an image P at k
levels of dynamic range.

In general, there are three sets variables of X : 1) pixels of
plane regions (red pixels in Fig. 1g), 2) boundary pixels of
plane regions (blue pixels in Fig. 1g), and 3) pixels inside
ground regions (green pixels in Fig. 1g).

The solution of visualization must keep the variables in
Set 1 unchanged and the ones in Set 2 “just noticeable”.
Further, the ordering of Set 3 must be preserved as much as
possible. Therefore, we formulate our visualization method
as follows.

1) Applying the JND principle to Set 2: For variables x
of Set 1, we take a

√
n×
√
n patch where i is its center pixel

index. According to the proposed JND principle, we have:{
xi − 1+δ

n−1
∑
j 6=i xj − u1i = 0

xi − 1
n−1

∑
j 6=i xj − u2i =

1
k

, (3)

if pi ≥ 1
n−1

∑
j 6=i pj

or {
−xi + 1−δ

n−1
∑
j 6=c xj − u1i = 0

−xi + 1
n−1

∑
j 6=i xj − u2i =

1
k

, (4)

if pi < 1
n−1

∑
j 6=i pj

In both cases, u1b and u2b are nonnegative. This can be
written as a linear equation system:

A1x− u = y1, (5)
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(a) Scene (b) Ground (c) Depth (d) Ours
Fig. 3. Another example.

2) Applying the JND principle to Set 3: The constraints in
the pixels of set 3 is simply the ordering constraints between
pairs of variables (xi, xj).

xi − xj − vij = 0 ⇐⇒ pi > pj , (6)

where vij is a nonnegative variable.
Further, if the pixels have the same values in the depth

map, they must have the same value in the visualization
space.

xi = xj ⇐⇒ pi = pj , (7)

This gives us a second linear system.

A2x− v = 0, (8)

3) Applying the JND principle to Set 1: For the pixels in
the plane region, we simple set

xi = pi, (9)

This gives us the third linear system

A3x = y3, (10)

Therefore, we can rewrite the whole visualization problem
as a linear programing problem y1

y2
y3

 =

A1 −I1 0
A2 0 −I2
A3 0 0

×
 x
u
v

 (11)

subject to x, u, v ≥ 0, where I1 and I2 are two identity
matrices. Once we have the solution x, we can re-normalize
it to 0 − 1 and render the solution in phosphene maps by
downsampling and reuducing dynamic range.

C. Nonnegative Conjugate Gradient for solving visualization
problem

Realtime response and small memory are two key features
in Bionic Eye systems. Improper selection of an optimization
method can easily slow down the computation. In our algo-
rithm, we choose Conjugate Gradient as a possible choice
[4].

Optimization over a large number of variables is a chal-
lenging task. Only a handful of methods are suitable for
large scale problems [4]. Conjugate Gradient based methods
are highly suitable for this purpose because only matrix
multiplications are involved. In conjugate direction methods,
the Nonnegative Conjugate Gradient [3] methods are more
suitable for some computational imaging problems.

We used the Nonnegative Conjugate Gradient (NCG).
NCG has similar advantages as other Conjugate Direction
method where only matrix multiplications are required, with
a small overhead to satisfy the boundary condition. The key

4 Levels 8 Levels 12 Levels 16 Levels
Fig. 4. Comparison between direct rendering (First and Second row) and
the augmentation based on our principle (Third and Forth row) of Fig. 3 at
different dynamic ranges.

idea of NCG is to go backward if any variable is out of
bounds, and re-start the algorithm if necessary. Please refer
to [3] for details.

IV. EXPERIMENTS

We first show some results of our algorithm. Then, we
demonstrate the efficacy of our algorithm at different dy-
namic range. Finally we show the results for an image se-
quence. These experiments suggest our principle is effective
in preserving critical information in phosphetic vision.

A. Demonstration

Fig. 2 shows our result in an indoor scene. The input of
our method is a depth map where each pixel is represented by
6 bits (i.e. 64 levels) (Fig. 2b). One can see that the obstacle
in the middle of Fig. 2a cannot be effectively identified in
Fig. 2b because the depth of the obstacle is very similar
to the depth of the ground. If we quantize Fig. 2b directly
to 8 levels of brightness, the contrast of the object is lost
completely (Fig. 2c). Therefore, the contrast of the obstacle
is not perceivable in the phosphene representation (Fig. 2d).

The ground plane segmentation gives us the ground region
(Fig. 2e) Therefore, we can apply our method in Sec. III to
ensure the visual difference between obstacles and ground
region is noticeable (Fig. 2f). Therefore, if we quantize Fig.
2c to 8 levels of brightness, the obstacle in the center is well
preserved (Fig. 2g). We can also see that the slope of the
ground is preserved in the phosphene rendering because we
impose an ordering constraint (Fig. 2h).

Fig. 2h clearly provides a better space perception com-
pared to Fig. 2d. This demonstrate the usefulness of our
augmentation based on the JND principle.

B. Results for different dynamic ranges

As we pointed out at Sec. I, quantization of the dynamic
range is an important constraint in the visualization. Here
we show the results for another scene (Fig. 3) at a number
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Fig. 5. A video example. The first row, intensity image; Second row, depth representations; third row, phosphene rendering of direct dynamic range
reduction (k = 8); Fourth row, phosphene rendering of our augmentations (k = 8).

of quantizations. Similar to the previous experiment, we
show the original depth representation (Fig. 3c) and the
augmentated depth maps by our proposed method (Fig. 3d).

Fig. 4 shows the results for Fig. 3c and 3d at 4, 8,
12, and 16 levels of dynamic ranges, respectively. At each
quantization, one can see that the obstacles are visible in the
phosphene maps generated by our method, but not in the
original depth representations.

This experiment shows our algorithm is adaptive to various
levels of brightness, and provides effective results for the
Bionic Eye.

C. Results for image sequences

We finally show results for images in a video. An ideal
phosphene augmentation highlights obstacles consistently.
This suggests that obstacles must appear unambiguously, and
their shapes/distance must also be consistent.

Fig. 5 shows results for 8 frames in a video. In our method
(4th row), one can see the obstacles in the middle of the
scene has a clear difference compared to the background,
and the size/shape of the obstacle can be identified easily.
These are two advantages over the direct visualization (3rd
row). Further, the obstacle in the lower right corner gradually
disappear when the ground-plane method stops reporting this
object as a non-traversable area.

This experiment shows our method generates consistent
visualization across frames in a video. Obstacles in videos
can be perceived because critical contrast is preserved.

V. CONCLUSION

We present a JND-based principle for augmenting results
for visual processing modules for Bionic Eye. This prin-
ciple ensures that critical contrast must remain perceivable
by maintaining of visual differences in visual processing.
Experiments show that the proposed method is effective
in visualizing results for a state of the art ground-plane
segmentation. Objects on the ground are guaranteed to have
visual differences at different dynamic ranges.
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