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Abstract— We show experimental results that the evoked
local field potentials of the rat somatosensory cortex from
natural tactile touch of forepaw digits and matched thalamic
microstimulation can be qualitatively and quantitively similar.
In ongoing efforts to optimize the microstimulation settings
(e.g., location, amplitude, etc.) to match the natural response,
we investigate whether subspace projection methods, specifically
the eigenface approach proposed in the computer vision com-
munity (Turk and Pentland 1991 [1]), can be used to choose the
parameters of microstimulation such that the response matches
a single tactile touch realization. Since the evoked potentials
from multiple electrodes are high dimensional spatio-temporal
data, the subspace projections improve computational efficiency
and can reduce the effect of noisy realizations. In computing
the PCA projections we use the peristimulus averages instead of
the realizations. The dataset is pruned of unreliable stimulation
types. A new subspace is computed for the pruned stimulation
type, and is used to estimate a sequence of microstimulations
to best match the natural responses. This microstimulation
sequence is applied in vivo and quantitative analysis shows that
per realization matching does statistically better than choosing
randomly from the pruned subset.

I. INTRODUCTION

Providing sensory feedback directly to the central nervous
system is one of the ambitious goals of next generation
neuroprosthetics and brain-machine interfaces. Specifically,
feedback via artificial stimulation [2], [3], [4], [5], [6], [7],
[8] may provide input to somatosensory cortex just as cursor
or robot movement may be derived as the output of the motor
cortex.

To recreate more naturalistic feedback for tactile neuro-
prosthetics tasks, our group has been investigating strategies
to optimize stimulation such that the evoked neural responses
are as similar as possible to those from natural tactile stimu-
lations [9], [10], [11], [12]. A divergence method can be used
to judge if the evoked potentials or spike trains match the
type from natural sources. Ideally, psychometric experiments
would be the final gold standard. However, a quantitative
distance metric per realization is necessary in the operation
of an optimal microstimulation feedback system. For local
field potentials, cross-correlation or Euclidean distance are
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reasonable metrics. In this work we investigate data-driven
subspace projection methods (i.e., principal component anal-
ysis) [1] and their effect on the similarity measures: we
estimate the maximum variance preserving subspaces for the
microstimulation evoked responses, and match each natural
stimuli realization to a peristimulus average using Euclidean
distance.

A. Stimulation optimization in the central nervous system

Artificial stimulation (either electrical microstimulation
or optogenetic) of the central nervous system can be used
as a clinical tool for identifying, stabilizing, or imprinting
neural activity. Optimizing deep brain stimulation for treat-
ment has predominantly focused on patient outcome [13]
or the anatomical extent of the microstimulation [14]. Work
in feedback on neuroprosthetics has been concerned with
the discriminability and/or repeatability of neural response,
wherein quantitative similarity measures on the evoked neu-
ral responses (either local field potentials or spikes) are
used to assess the outcome of closed-loop microstimulation
control [15]. Reliability is important if the goal is to imprint
the same (and possibly arbitrary) neural response for a
specific external sensory event. Alternatively, in this work we
investigate the goal of optimizing the artificial stimulation
such that the evoked response is as close as possible to a
natural response. In this work, the closest is chosen from a
discrete set of microstimulation configurations (electrode(s)
and amplitude of single biphasic pulses). A key limitation
of this work is the parameter space must be kept small for
a manageable discrete search. If every parameter is allowed
to vary the number of microstimulation configurations grows
combinatorially, especially when multiple pulses at different
times are allowed. Alternatively, an inverse control approach
can search the continuous space [16].

B. Thalamic electrical microstimulation

Local field potentials were recorded from a multielectrode
array in the somatosensory cortex (S1) during both natural
tactile stimulation (light “thwacks” of forepaw digits and
palm) and microstimulation in the somatosensory region
(VPL) of the thalamus. Stimulating in the thalamus is
chosen because it avoids the artifacts produced by intra-
cortical stimulation. By choosing a location earlier in the
somatosensory pathway the existing neural structures carry
the evoked response to the cortex. Though requiring a more
difficult implantation, the thalamic microstimulation appears
to deliver more naturalistic evoked responses; however, only
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psychometric experiments can tell if these translate to actual
perceptions.

II. METHOD

The method consists of a subspace identification/pruning
with training data followed by matching the natural responses
to a newly chosen stimulation sequence. The chosen stimula-
tion sequence can then be applied in vivo and evaluated quan-
titatively. Specifically, training consists of an initial subspace
identification from a training sequence of stimulations, stim-
ulation type pruning with an entropy criterion, re-estimation
of the subspace, and matching a specific stimulation type to
each natural stimulus.

A. Notation

We introduce the following notation: capital letters A will
denote sets or matrices, |A| denotes the cardinality of set A,
and boldface letters indicate vectors a.

B. Sets of evoked responses

The initial microstimulation modeling dataset consists of
a set S = {(Yi, ai, ti)}|S|i=1 of neural responses recorded
at sampling rate Fs and corresponding microstimulation
parameters settings where an L-length M -channel evoked
response for stimulation i at time ti is denoted Yi ∈ RL×M

and the microstimulation parameter settings are indexed by
ai ∈ A = {1, . . . , |A|}. A is defined as an index set for a
discrete set of possible microstimulation settings—i.e., each
index a is representative of the complete spatio-temporal
aspects of short (< 10ms) biphasic current pulses. The
dataset notation is misleading because the modeling dataset
consists of one long modeling sequence with stimulations
occurring with pseudo-random truncated Gaussian intervals
instead of independent trials—for instance, pairs of the
windows Yi, Yj such that i 6= j ∧ |ti − tj | < L/Fs will be
overlapping. The occasional overlap does introduces a bias
into the peristimulus averages, and it can be ameliorated by
only using the non-overlapping time lags when computing
the averages, but this approach is not addressed here.

Similarly, the recording (at same sampling frequency FS)
during natural tactile stimulation via thwacking different
forepaw digits or pads consists of a long sequence of tactile
touches or “thwacks”. Since each thwack will be matched
with a corresponding stimulation we denote the set of natural
stimulations as T = {(Xi, di, ti)}|T |i=1 where Xi ∈ RL×M is
a L-length M -channel evoked response for thwack i at time
ti at location indexed by di.

C. Subspace identification

An eigenspace decomposition [1] is used to find the
principal subspace of the peristimulus evoked responses. This
is used twice in the overall method: first, with the full set
of stimulation types A, and then again after with a pruned
subset A? ⊆ A. The first N coefficients in the subspace
c1, . . . , cN N ≤ |A?| are used for pruning and matching.

The overview of the method follows (where A,S may
be replaced with A? ⊆ A and S? ⊆ S without loss of
generality):

1) Estimate the peristimulus average for all responses

Ȳ =
1

|S|

|S|∑
i=1

Yi Yi ∈ RL×M (1)

2) Estimate a peristimulus average for each response type

Ȳa =
1

|Ia|
∑
i∈Ia

Yi (2)

Ia = {i ∈ {1, . . . , |S|} : ai = a} a ∈ A
3) Form a matrix of the centered and vectorized peristim-

ulus averages

Ŷ =
[
vec(Ȳ1 − Ȳ ) · · · vec(Ȳ|A| − Ȳ )

]
∈ R(L·M)×|A|

(3)
4) Compute the cross-covariance matrix between the cen-

tered peristimulus averages

C = Ŷ TŶ ∈ R|A|×|A| (4)

5) Find the eigenvalues and left eigenvectors such that

USWT = C, U =
[
u1 · · ·u|A|

]
∈ R|A|×|A| (5)

where U and W are unitary matrix with orthogonal
columns and S is diagonal with eigenvalues as its
elements

6) Define the vectors of the eigenspaces of the peristim-
ulus averages RL·M

vj = Ŷ uj ∈ RL·M , j ∈ {1, . . . , |A|} (6)

7) For any response Z ∈ RL×M find the projection into
the subspace spanned by each vector

z̃j = vT
j vec(Z − Ȳ ) j ∈ {1, . . . , N} (7)

8) Define the function fS that projects any response Z ∈
RL×M to the N -dimensional eigenspace

fS(Z) = [z̃1 · · · z̃N ]T = [v1 · · ·vN ]
T

vec(Z−Ȳ ) (8)

D. Parameter pruning via classification entropy

The peristimulus average for each response type is pro-
jected via fS : RL×M 7→ RN

ỹa = fS(Ȳa) (9)

Each realization in S is then assigned to the nearest mean
in the subspace using Euclidean distance.

âi = argmink∈A‖ỹk − fS(Yi)‖ i ∈ {1, . . . , |S|} (10)

As a surrogate for the entropy of the evoked responses
for each stimulation type, we find the entropy over the set
of discrete assignments for a given class. Let pa(k) k, a ∈
{1, . . . , |A|} be the proportion of the realization of stimula-
tion type a which had nearest mean ỹk in the subspace

pa(k) =
|{i ∈ {1, . . . , |S|} : âi = k ∧ ai = a}|
|{i ∈ {1, . . . , |S|} : ai = a}|

. (11)

Then the entropy of the assignments for stimulation type a
is
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Ha =
∑
k∈A

−pa(k) log2 pa(k)}. (12)

Define the pruned subset A? using an upper threshold
on the entropy as half the maximum entropy A? = {a ∈
A : Ha < 0.5 log2(|A|)}. The pruned dataset is then
S? = {(Yi, ai) ∀i ∈ {1, . . . , |S|} : ai ∈ A?}.

E. Matching to natural stimulation

A new projection function fS? : RL×M 7→ RN is
computed for S? reusing (1)–(8). Then each natural stimuli
realization (Xi, di, ti) ∈ T of type di and at time ti is
matched to the nearest peristimulus average in the subspace
(an explicit search for the minimum distance per peristimulus
average is also made over small shifts in alignment around
ti since the natural response may not be perfectly aligned).

ǎi = argmink∈A?‖ỹk − fS?(Xi)‖ i ∈ {1, . . . , |T |} (13)

The microstimulation sequence
(
(ǎ1, t1), . . . , (ǎ|T |, t|T |)

)
can then be applied in vivo in order to evoke responses that
match the natural stimuli evoked responses. The set of novel
evoked responses and corresponding microstimulation type
and times will be denoted U = {(Ui, ǎi, ti)}|T |i=1.

We use Euclidean distance (not in the identified subspace)
as the similarity measure between evoked responses.

III. DATA COLLECTION

A female Long-Evans rat (Hilltop, Scottsdale, PA) was
anesthetized with isofluorane, and 32 channel Michigan
Probes (NeuroNexus Inc.) electrode arrays were inserted into
the hand region of primary somatosensory cortex (S1). The
arrays had four (15µm thick) iridium shanks, each with 8
contacts (100µm spacing), and the shanks were positioned
to span 1.2mm in the anterior–posterior direction. The bot-
tommost contact was inserted to a depth of 1.2mm from the
pial surface. The circular electrode surfaces had a diameter
of 40µm. Another array with two rows (500µm spacing) and
8 columns (250µm spacing) was inserted into VPL thalamus,
approximately 6.5mm beneath the pial surface. The array was
made of platinum iridium (MicroProbes Inc) with 1250µm2

of exposed tip metal.
All animal procedures were approved by the SUNY Down-

state Medical Center IACUC and conformed to National
Institutes of Health guidelines. Neural recordings were made
using a multichannel acquisition system (Tucker Davis).
Local field potential data was pre-amplified 1000x (filter
cutoffs at 0.7Hz and 8.8kHz) and digitized at 25kHz. LFPs
were further filtered from 1Hz to 300Hz using a 3rd order
Butterworth filter.

The experimental procedure involved delivering 210 tactile
touches to the rat’s forepaw (repeated for digit pads 1–4 and
two sites on the palm) using a motorized probe. The motor
was controlled by a PD controller that poised 4mm above the
surface of the skin and momentarily pressed down for two
different hold times (150 and 200ms) and three amplitudes

(3, 5, and 10 degrees in the direction of the skin), alternating
pseudorandomly to deliver 35 presentations of each setting.

After this procedure, we switched the VPL array to
stimulation mode using a mechanical switch, and delivered
a pseudorandom sequence of biphasic, bipolar, 200µs wide
pulses through the 8 non-overlapping adjacent pairs in the
array. 3 amplitude settings (10, 20 and 30µA) were tested,
and all configurations were delivered 40 times, |A| = 24.

After numerically matching each tactile touch to a suitable
stimulation, we delivered them to the thalamus and recorded
the S1 responses.

IV. RESULTS

To assess the in vivo performance of the sub-
space matching, the generated microstimulation sequence(
(ǎ1, t1), . . . , (ǎ|T |, t|T |)

)
was applied immediately follow-

ing computation. The microstimulation response set U was
recorded and then compared with the actual natural response
set T . A qualitative comparison of an excerpt can be seen in
Fig. 1.

For quantitative analysis, 0.25s intervals were extracted
from the microstimulation response beginning at the time of
stimulation; equal length segments were also extracted for
the corresponding time in the natural response, and the set
{‖Ui−Xi‖}|T |i=1 of Euclidean distances between each corre-
sponding natural and the matched stimulation response was
calculated (a different set was formed for each thwack lo-
cation). Furthermore, the set of Euclidean distances between
each natural response Xi and an unmatched microstimula-
tion response Uji was calculated {‖Uji − Xi‖}|T |i=1 ∀ji ∈
{1, . . . , |U |} ∧ ǎji 6= ǎi (the unmatched response is in
the same dataset U but with a different stimulation type);
since different types had unequal occurrences this set was
calculated with replacement. Finally, the set of Euclidean
distances between each natural response Xi and a shuf-
fled microstimulation response Uji was calculated {‖Uji −
Xi‖}|T |i=1 ∀ji ∈ {1, . . . , |U |} ∧ Uji 6= Ui (same stimulation
type but permuted indexes).

The average of the distances is an indication of how well
the evoked responses from the entire stimulation sequence
emulated the thwack recording T . Three separate hypothesis
tests were performed per thwack location on the similarity
between: matched and unmatched, matched and shuffled, and
shuffled and unmatched responses. The surrogate distribu-
tions for the null hypotheses were created by 500 Monte
Carlo calculations of the distance between the thwack re-
sponses and randomly ordered stimulation responses (either
matched or unmatched). The hypothesis test for unmatched
stimulation types was rejected with p < 0.1 for digit 1 and
digit 2 thwack locations. For these digits the chosen stim-
ulation sequence evoked a response much closer to thwack
response than a random stimulation sequence with different
stimulation types drawn from A?. The hypothesis test for
matched stimulation types but shuffled order was not rejected
with p > 0.1 on all thwack location—that is, the actual
order of when the stimulations occurred in the sequence
(as long as they were the same type) was not significantly
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Fig. 1. Local field potentials across the 16 S1 channels for natural (digit 1) and microstimulation evoked responses. Microstimulation times are marked
by stars.

different. A comparison of the distribution of distances for
unmatched and shuffled matched was made with a one-sided
Kolmogorov-Smirnov hypothesis test between the matched
and shuffled CDFs for each digit. The divergence on all digits
was significant at a level of 0.05. Fig. 2 shows empirical
CDFs with only 50 Monte Carlo runs.
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Fig. 2. Comparison of total error between thwack responses and stimulation
responses. Matched distance is shown versus empirical cumulative distribu-
tion functions of the null hypotheses. Digits 2 and 3 matched responses
were significantly smaller than unmatched responses.

V. DISCUSSION

We have proposed a complete algorithm to match specific
microstimulation parameters to natural stimuli realizations in
an attempt to recreate somatosensory perceptions. Subspace
identification and parameter pruning are used to identify
a set of stimulation settings that evoke reliable responses;
then each natural stimulus realization is matched to the
closest peristimulus average in the subspace. The sequence
of matched stimulations represents a novel microstimulation
sequence that was then applied in vivo. Both quantitative and
qualitative results demonstrate the success of the method in
further experiments. The subspace method is computationally
efficient, but the method is limited to the original set of
configurations by the lack of modeling. To our knowledge
this is the first in vivo study of microstimulation optimization
to match natural responses, and one of the first to use tha-
lamic microstimulation to produce cortical responses. How-
ever, this is only a preliminary investigation into thalamic
microstimulation as a surrogate for natural tactile feedback,
as full psychometric evaluation is needed to verify whether
artificially matched evoked responses are indicative of true
perception.
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