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Gait episode identification based on wavelet
feature clustering of spectrogram images
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Abstract—Measurement of gait parameters can provide
important information about a person’s health and safety.
Automatic analysis of gait using kinematic sensors is a newly
emerging area of research. We propose a new approach to detect
gait episodes using Neural Network and and clustering of
wavelet-decomposed spectrogram images. Signals from a chest-
worn inertial measurement unit (IMU) is processed using Explicit
Complementary Filter (ECF) to estimate and track torso angle.
Using the feature obtained from wavelet decomposition of
spectrogram images, we use an Augmented Radial Basis Neural
Network (ARBF) to classify walking episodes. Cluster centroids
of ARBF are optimized using Rapid Cluster Estimation (RCE). A
pilot study of 11 participants suggests that our approach is able
to distinguish between walk and non-walk activities with up to
85.71% sensitivity and 91.34 % specificity.

I. INTRODUCTION

Measuring the frequency and length of walking activities
are useful for monitoring health condition assessing treatment
efficacy [1]. Passantino reported strong correlation between
the chance of survival and changes in the distance walked for
patients with chronic heart failure [2]. Walking is a complex
process. It involves complex involuntary coordination of the
limbs and torso [3]. Gait cadence (step rate) can be
determined from small swings in torso angle in the sagittal
plane due to the periodic shifting of moment of inertia that
occurs on each phase [4].

Previousy Barralon has classified walk episode by
calculating spectral energy from Short-time Fourier transform
(STFT) and wavelet energy from Discrete Wavelet Transform
(DWT) [4]. Barralon reported detection sensitivity of 78% and
specificity of 68.7%. Bidargaddi uses similar approach using
waist-worn accelerometer to distinguish walking from other
high impact activities with 89.14% sensitivity and 89.97%
specificity [1].

This research aims to develop more-accurate gait cycle
analysis for ambulatory monitoring systems, such as those we
are working on at University of Technology Sydney Centre for
Health Technologies [5].

This paper describes a new approach for gait episode
detection using signals from a chest-mounted IMU. It is
divided as follows. Section II explains the development
infrastructure. Section III describes the method. Section IV
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presents the data collection. Section V presents results and
analysis, and Section VI provides conclusions.

II. OVERVIEW

This pilot study used a Shimmer MEMS kinematic module
with a 9DoF daughterboard. The 9DoF board has a Freescale
MMAT7361 tri-axial accelerometer, a Honeywell HMC5843
magnetometer, and an InvenSense500 gyroscope.

Data collection and an Attitude Heading Reference System
(AHRS) is run externally in J2SE running a custom driver,
with 3-D visualization under jMonkey Engine. The IMU
samples at 50 Hz [6]. We do algorithmic prototyping in
MATLAB. The device is strapped on the participant’s chest in
a way that the torso angle can be observed directly from the
pitch measurement. During walking, the frequency of torso-
swing ranges from 0.6 to 2.5 Hz, [4, 7], so we sample data for
processing at 20Hz.

III. METHOD

The method includes three processes: torso angle
estimation, time-frequency signal processing, and spectrogram
image processing. First, the orientation quaternion g of the
sensor is estimated using the explicit complementary filter
(ECF) [8] applied to measurements of angular velocity ® and
acceleration a. Pitch information 0 is calculated from the
sensor orientation. The signal is then convolved with a digital
band pass filter (bpf) with cutoff frequencies of 0.5Hz and
5Hz to yield 6,,. Autocorrelation is used to minimize noisy
signals on 0,. The Discrete Fourier Transform (DFT) is then
be applied to the autocorrelated signal using Bartlett’s method
to extract the spectrogram S(f;f). Overlapped spectrograms are
averaged. The spectrogram image from OHz to 5Hz is cropped
and transformed using discrete wavelet transform (DWT) to
the third order using Haar wavelet. This image feature is used
as the input to the Augmented Radial Basis Neural Network to
classify whether the activity is walking or not walking. The
learning process consists of the use of Rapid Centroid
Estimation (RCE) to determine optimal cluster centroids for
the training set. The block diagram describing the gait cycle
classification algorithm can be seen in Figure 1.

A. Torso Angle Estimation

Torso angle is estimated using ECF applied to the
information from the gyroscope and accelerometers [8]. Our
initial tests suggest that the information provided by these two
sensors is sufficient to estimate torso angle.
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Figure 2. Block Diagram of the Torso Orientation Estimation
Algorithm

The output of the rate gyroscope ® and normalized
accelerometer reading 4 can be represented in vector form as
in (1) and (2). The symbol * denotes a (1-norm) unit vector.

mZ]T (D
=fo 4 a, af 2)

is estimated by integrating 4 (3).

:[0 o,

System attitude 4
Rotation 4 is evaluated using a simple quaternion product of

the current estimate and the compensated gyroscope
measurement (4). Innovation 9 is updated using proportional-
integral (PI) compensation (5). The proportional gain Kp
corrects the attitude information by referring to gravity. The
integral gain K; corrects gyroscope bias. The error is the
relative rotational discrepancy between the 4 estimate of the z-

axis of the inertial frame and the gravitational reference from
the accelerometer 4 (6-7).
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The orientation of the torso is then calculated using a
quaternion to Euler angle transformation (8),

0 — tan-! 2(Gody + 4245 (8)
1-2G,* +4,°

In (8), orepresents the pitch angle equivalent of the
quaternion that corresponds to the torso angle as per the
installed orientation of the sensor.

A block diagram describing the data flow of the torso
orientation estimation algorithm is given in Figure 2.

B. Time-Frequency Signal Processing

On detection period T, which is set to happen every 20
samples, the time domain signal of torso angle is first filtered
with a band pass filter. Autocorrelation is applied to the
filtered signal to extract its fundamental frequency and reduce
unwanted noise. The signal is transformed using Bartlett’s
method to estimate the power spectra.

A 4" order Butterworth filter with cutoff frequencies of 1
Hz and 5 Hz is used because of its perfectly flat frequency
response within its pass band. Autocorrelation is used to
extract fundamental frequency of a single tone signal based on
its periodicity. This property is highly useful for gait
parameter analysis where the gait-cadence frequency is of
primary interest [9]. The waveforms before and after the time
frequency signal processing are shown in Figure 3.

25

g?: f V\ V_::’f(t)

gzr W%w m (Y"fw'l p"wm mﬂ Hj\ l m’L

A
ST TYTTTT T

(s)

Figure 3. Torso angle § and and its band passed filtered signal with
respect to time during walk (top) and autocorrelation (bottom)
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Spectrogram overlaps are averaged as more signals are
collected over time. Blackman-Harris windows are used for
each DFT transform. In this situation, Bartlett’s method is
preferable to that of conventional STFT because the
spectrograms it produces are denser, more defined, and less
noisy.

C. DWT Image Feature Extraction

Spectrogram image processing is exploited as a powerful
signal processing method in many fields including speech
processing [10] and biomedical engineering [11, 12]. Recent
research by El-Gohary demonstrated the capability of
spectrogram analysis using kinematic sensors to track tremors
in Parkinson Disease patients in free-living conditions [12].

Each second the spectrogram image of 20 seconds before
current activity is cropped (400 samples). The image
resolution is exactly 128 by 400. 128 is the number of FFT
bins used (0-10Hz). Since walking activity is characterized by
frequency between 0.6 to 2.5Hz, we crop the image to 5Hz.
The cropped image size is reduced to 64 by 400. DWT to the
third order is applied to the cropped image. We use the
approximation image coefficients from the resulting transform.
The resulting image size is further reduced to 8 by 50. This
approach effectively discretizes the SHz bandwidth to 8 levels.
Frequency consistency in the first four level of the image is an
important feature for describing walking cadence. These
images are used for training and classification. DWT features
of walking spectrogram can be seen in Figure 4. DWT features
of non-walking spectrogram can be seen in Figure 5.

Figure 4. DWT features of walking signal from torso angle spectrogram

Figure 5. DWT features of non-walking signal from torso angle
spectrogram

D. Swarm Rapid Centroid Estimation

Rapid Centroid Estimation (RCE) was recently proposed
as a lightweight variant of Particle Swarm Clustering (PSC)
[13, 14]. A comprehensive information on swarm strategy for
RCE used in this paper can be read in [15]. The Swarm RCE
is used to cluster the DWT features obtained from III.C. We
encourage readers to refer to the original papers for
comprehensive information on the algorithm and optimization
strategies [13-15]. The results can be seen in Figure 6.

Figure 6. Cluster centroids of DWT features of torso angle spectrogram
optimized with RCE

E. Augmented Radial Basis Function — Neural Network

Augmented Radial Basis Neural Network (ARBF-NN) or
simply ARBF was proposed as a variant of RBF neural
network. It has been used for the classification of head
movement command using head-worn accelerometer [16] and
classification of falls using waist-worn accelerometer [5].

The ARBF uses Gaussian radial basis kernel, and is highly
dependent to the quality of centroids. The input to the RBF
layer is the vectorized DWT feature image which dimension is
8*50 = 400. The dimension of the Gaussian kernel is then
equal to 400. The output of the RBF layer is a vector where
p,and o, correspond to cluster centroids and the standard

deviation of each RBF node. In this paper the RBF centroids
for ARBF are optimized using RCE (IIL.D). The MLP layer
uses both sigmoid kernels in hidden and output layer. No
normalization method is required for MLP because the RBF
layer has already normalized the input signals from 0 to 1. The
MLP layer is trained with resilient back-propagation. The
configuration of ARBF can be seen in Figure 7.

Figure 7. The Augmented Radial Basis Neural Network (ARBF)

IV. EXPERIMENTAL SETTINGS AND DATA COLLECTION

The algorithm was tested using data recorded from 11
participants. Three of the participants are elderly people aged
over 55. The data was collected in an office environment. The
data collection scheme was devised to resemble movements
associated with ordinary daily living activities. Each data
collection period consisted of ten to fifteen minutes of data
collection per participant. During each data collection period,
the subjects typically alternated between walking and not
walking for a few minutes at a time.

The participants were encouraged to relax and move
however they wanted to. The activities of the participants
during non-walk periods included talking, browsing the
internet, standing up/sitting down, lying down, making coffee,
writing, drawing, playing a musical instrument, singing,
playing computer games, stretching, and reading books. The
participants were also encouraged to walk at a comfortable
pace for a period of around two minutes to five minutes.

{ Casual activity such as talking, eating and drinking was

encouraged throughout the whole data collection period.

The experimental data composition can be seen in Table L.
3617.6 seconds (72352 samples) of walking signal and 5511.2
seconds (110223 samples) of not-walking signal were
recorded.
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TABLE L EXPERIMENTAL DATA COMPOSITION

Data Type Walk Not-Walk Ratio to Included
(samples) (samples) total data | Subjects
Training 12661 19289 17.5% 1,23
Validation 2713 4133 3.75% 1,23
Test 56987 86801 78.75% 4-11

The spectrogram features used in this experiment are torso
angle signals calculated using IIILA, raw acceleration
magnitude from accelerometer readings, and Anteroposterior
acceleration (a,). For each 400 samples, features are
calculated using III.B to III.C. Swarm RCE is then used to
cluster the features as described in IIL.D. The clustering result
is used as the ARBF basis centroids. MLP segment of ARBF
is then trained using resilient back-propagation.

V. RESULTS AND DISCUSSIONS

Table II shows the performance of the classifier using
different features. From Table II, it can be seen that torso
angle provides best performance. Features from torso angle
signals reach up to 85.71% sensitivity and 91.34% specificity.
The area under the curve (AUC) of torso angle is higher than
the other algorithms (0.9454 compared to 0.9250 and 0.9024).
These results suggest an improvement compared with prior
research [4, 7]. The ROC curve can be seen in Figure 8.

We have observed that torso orientation obtained using
ECF is insensitive to impacts. The resulting autocorrelation of
the torso angle of a walking signal is very similar to a sinusoid
which makes the spectrogram of walking and non-walking
very distinct (IIL.B). This is true even when the subject is
talking or coughing while walking.

TABLE IL CLASSIFIER PERFORMANCE
Feature Performance
Sensitivity | Specificity AUC
Torso Angle (0) 85.71% | 91.34% | 0.9454
Acc. Magnitude (Ja? +a) +a2) | 81.31% | 90.69% | 09250
Anteroposterior Acceleration {(a,) 78.93% 91.47% 0.9024
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Figure 7. ROC curve of the classifier trained using different features

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Using an accelerometer and a gyroscope, the results of the
pilot study suggest that spectrum analysis may be useful to
distinguish walking activity from other activity. We have
shown that greater performance can be achieved by using
spectrogram analysis, DWT, RCE and ARBF. Our plans for
the future include further work to increase robustness and
implementation in real time.
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