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Abstract— Local field potentials (LFPs) represent the rel-
atively slow varying components of the neural signal, and
their analysis is instrumental in understanding normal brain
function. To be properly analyzed, this signal needs to be
separated in its fundamental frequency bands. Recent studies
have shown that empirical mode decomposition (EMD) can be
exploited to pre-process LFP recordings in order to achieve a
proper separation. However, depending on the analyzed signal,
EMD is known to generate components that may cover a too
wide frequency range to be considered as narrow banded.
As an alternative, we present here an improved version of
the singular spectrum analysis (SSA) algorithm, validated by
numerical simulations, and applied to LFP recordings in V1
of a macaque monkey exposed to simple visual stimuli. The
components generated by the improved SSA algorithm are
shown to be more meaningful than those generated by EMD,
paving the way for its use in LFP analysis.

I. INTRODUCTION

Given a localized area in the brain, local field poten-
tials (LFPs) represent the relatively slow varying temporal
components of the neural signal (the synchronized dendritic
input) picked up from within a few hundreds of microns
of a recording electrode. Superimposed on the LFP are the
temporal distributions of action potentials (the output from
the recorded neural population). The study of the processes
underlying LFPs is considered important in understanding
information transmission in the brain. For example, current
technologies permit the recording of ongoing LFPs mea-
sured from different cortical layers, using depth probes with
recording contacts spread along a linear recording shaft to
cover the entire depth of cortex. This opens the possibility
of studying information transmission across cortical layers
by the analysis of coherence among different layers [1].

In vision, it is well-established that stimulation causes
a relative enhancement of power within a spectral band
centered in the gamma-band frequency region of 30 to 100
Hz [2], [3]. Specific theoretical proposals have pointed out
the prominent role of coherence in the gamma-band range as
a vehicle for communication among different neuronal popu-
lations. While the classical view of the function of coherence
is that of a clock keeping excitatory and inhibitory phases of
activity in communicating populations in a specific frequency
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and phase, gamma-band coherence has been shown recently
to not require a stable frequency but to be maintained despite
a shift in peak frequency governed by stimulus contrast [4].

However, a detailed time-frequency analysis of LFPs re-
quires LFPs from distinct populations to be studied sepa-
rately from population spiking. Moreover, it is necessary to
focus on specific frequency bands, asking for band separation
techniques. As gamma oscillations have been discovered to
be nonstationary in the visual cortex [4], and EEG signal is
known to be nonlinear [5], tools able to capture nonstationary
and nonlinear dynamics are required. To achieve this at the
level of single trials (stimulus presentations), Liang et al.
have shown the usefulness of pre-processing univariate neu-
robiological time series recorded during visual attention task
with empirical mode decomposition (EMD) [5]. By virtue of
EMD, LFPs can be indeed resolved into a sum of intrinsic
components where high-frequency components have been
mainly identified with gamma-band oscillations (30-90 Hz).
This decomposition allows one to achieve a meaningful
Hilbert Spectrum [6], thus providing a high resolution time-
frequency analysis not affected by the Heisenberg uncertainty
principle, as for the standard spectrogram. Indeed, the Short
Time Fourier Transform and the Wavelet Transform provide
limited resolution in time and frequency [5]. Hence, EMD is
expected to decompose a nonlinear and nonstationary signal
in narrow band components. Additionally, these components
are interpretable in terms of the signal structure, which is
more difficult for wavelet coefficients. However, depending
on the analyzed signal, the first obtained component may
cover a too wide frequency range to be considered narrow
band [7].

A method which shares common features with EMD is
the singular spectrum analysis (SSA) [8]. SSA decomposes
a nonlinear time series into a sum of several interpretable
additive components (trend, oscillatory components, and
noise). SSA has been proven useful in the analysis of EEG
recordings for the identification of sleep stages [9] or the
detection of seizure [10]. SSA is able to focus on narrow
band components of the analyzed signal, which makes this
method a suitable pre-processor of LFP recordings. Addi-
tionally, it can be used for change-point detection [11]. The
only limitation is that in its standard definition, the window
length for the analysis needs to be set by the user.

In this study, we present an improved SSA algorithm able
to perform a data driven decomposition of a signal, in which
the window length is automatically defined on the spectral
properties of the signal. The method is validated through
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numerical simulations and shown to outperform EMD in the
extraction of narrow band components. Moreover, compari-
son with EMD is also performed on real LFP recordings from
macaque V1 cortex undergoing visual stimulation task. The
proposed algorithm is shown to generate gamma-band com-
ponents characterized by higher energy than those given by
EMD, more suitable in tracking the changes in the gamma-
band energy content before and after stimulus presentation.

II. METHODS

A. EMD and SSA

EMD is a fully adaptive, data-driven approach that de-
composes a nonlinear and non-stationary signal into a linear
combination of intrinsic oscillatory modes, called intrinsic
mode functions (IMFs) [6], [12]. The IMFs are amplitude-
modulated/frequency-modulated components which can be
seen as oscillations underlying the observed signal. To ensure
that the time frequency spectra yield meaningful frequency
estimates, IMFs are functions with symmetric upper and
lower envelopes and for which the number of zero crossings
and the number of extrema differ at most by one. The
standard EMD algorithm decomposes a signal y(t) as y(t) =∑F

i=1 ci(t) + r(t), where {ci(t)Fi=1} is the set of F IMFs,
and r(t) is a monotonic residue. To extract the IMFs, an
iterative method known as the sifting process is used.

SSA consists of two complementary stages: decomposition
and reconstruction [8]. Given a time series x(n), n =
0, . . . , N − 1, assumed to be stationary in the weak sense,
let L be an integer (window length), 1 < L < N . The
embedding procedure forms K = N −L+1 lagged vectors
xi = (x(i), . . . , x(i+ L− 1))T, with i = 1, . . . , N − L+ 1.
The trajectory matrix of the series x(n) is then given by
X = [x1,x2, . . . ,xK ]T, such that this is a Hankel matrix
(constant skew-diagonals). The singular value decomposition
(SVD) of X is then computed, providing X = UDVT,
with U = (K × L) and V = (L × L) containing the left
and right singular vectors, respectively, and D = (L × L)
being the diagonal matrix containing the singular values
(the square root of the corresponding eigenvalues λ). Matrix
X is thus decomposed in a sum of rank-one matrices Xi

such that X =
∑L

i=1 Xi =
∑L

i=1

√
λiUiV

T
i . Matrix X

is then reconstructed by exploiting X1 only (the largest
eigenvalue and eigenvector), such that X1 =

√
λ1U1V

T
1 . The

last step in basic SSA transforms X1 into a new series of
length N . Defining matrix Y as the (L × K) 90 degree
counterclockwise rotation of matrix X1, diagonal averaging
transfers the matrix Y to the series g(n), n = 0, . . . , N−1 by
averaging each diagonal k of Y, diag(Y, k) (with k = −L−
1, . . . , N − L), so that g(n) = 1

L

∑
L diag(Y, n − L + 1).

The first component g1(n) is subtracted from x(n), and the
second component g2(n) is computed from the residual (with
L unchanged).

B. Improved SSA

As underlined in Section I, the window length L is
to be set before applying SSA. The final result is highly
dependent on the particular choice of L and this can present

Fig. 1. (a) Signal x1(n) generated by the first simulation. (b) Signal x2(n)
generated by the second simulation; a.u.: arbitrary units.

an issue when a priori knowledge about the frequency-bands
corresponding to the weak stationarities contained in the
analyzed signal is absent. Hence, we propose the follow-
ing improvement. Given the time series x(n), its Fourier
Transform is obtained and the dominant frequency fD in its
spectrum is identified. Hence, the window length L is set
to the inverse of fD, such that L = 1

fD
FS , where FS is

the sampling frequency. In case fD = 0, L is set to FS

2 to
identify very low frequency oscillations. The first component
g1(n) is then subtracted from x(n), a new L is computed
for the residual, and the procedure is repeated to find the
second component g2(n). The algorithm is terminated when
the last component does contribute to the reconstruction of
the original signal for less than 0.01%.

III. METHOD VALIDATION

A. Simulation Design

We define two harmonic signals characterized by dominant
frequencies in different frequency-bands, such that:

s1(n) = sin(2πf1/Fsn)

s2(n) = sin(2πf2/Fsn) (1)

with f1 = 5 Hz, f2 = 75 Hz, and Fs = 1 kHz. In the
first simulation, we considered a concatenation of the two
harmonic signals s1(n) and s1(n), as follows:

x1(n) =

{
s1(n) for n = 0, . . . , 499
s2(n) for n = 500, . . . , 999

In the second simulation, we consider the partial super-
position of the low frequency harmonic signal s1(n) and a
low-amplitude version of the high frequency signal s2(n), as
follows:

x2(n) =

⎧⎨
⎩

s1(n) for n = 0, . . . , 499
s1(n) + 0.2s2(n) for n = 500, . . . , 799
s1(n) for n = 800, . . . , 999

Signals x1(n) and x2(n) are represented in Fig. 1-(a) and
1-(b), respectively.
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Fig. 2. (a) The IMF obtained from the EMD of the first simulated signal
x1(n). (b) The two main components obtained from the SSA of the first
simulated signal x1(n); a.u.: arbitrary units.

Fig. 3. (a) The first two IMFs obtained from the EMD of the second
simulated signal x2(n). (b) The two main components obtained from the
SSA of the second simulated signal x2(n); a.u.: arbitrary units.

B. Simulation Results

Fig. 2 reports the results obtained by applying EMD and
the improved SSA to the first simulated signal, x1(n). As
can be noticed from Fig. 2-(a), the application of EMD
to x1(n) generates only one IMF (IMF1), identical to the
original signal. This is because signal x1(n) is built so as to
satisfy the two conditions for a signal to be considered an
IMF (symmetric upper and lower envelopes and identical
number of zero crossings and extrema). Hence, EMD is
shown to be unable to decompose x1(n) in its two main
components. Conversely, the application of SSA to x1(n),
as shown in Fig. 2-(b), generates two main components (g1
and g2), which account for 99.89% of the variance of x1(n),
each one representing one of the two component in x1(n).

Fig. 3 reports the results obtained by applying EMD and
the improved SSA to the second simulated signal, x2(n).
It can be noticed how the first two IMFs provided by the
EMD of x2(n), accounting for the 99.05% of the variance in
x2(n), both contain information about the two components in
x2(n) (Fig. 3-(a)), whereas SSA generates two components,
accounting for the 99.96% of the variance in x2(n), each

Fig. 4. A typical trial of LFP recording from area V1; t=0 represents
stimulus onset.

one representing one of the two harmonics composing x2(n)
(Fig. 3-(b)).

Hence, SSA was able to decompose a signal in narrow-
band components from two representative simulated signals,
whereas EMD failed to produce an equivalent narrow-band
separation. Moreover, additional simulations showed SSA to
be insensitive to pink noise, a characteristic noise in the LFP
power spectrum.

IV. APPLICATION TO REAL NEURONAL SIGNALS

To illustrate the superiority of the improved SSA al-
gorithm compared with EMD, we used LFP data from
visual cortical area V1 of a macaque monkey maintaining
stable fixation, while grating stimuli were presented away
from fixation, in the receptive fields of recorded neurons.
All procedures used for recording in the macaque monkey
were in accordance with the European Directive on Animal
Research, and approved by the animal research ethics com-
mittee (DEC) at the Radboud University Nijmegen. Here,
we evaluated the ability of the two methods to identify high
energy nonstationary gamma-band components, describing
the relative enhancement of power within the gamma-band
following visual stimulation. An example of a single-trial
field potential recording is shown in Fig. 4 (time t=0
represents stimulus onset). Following a common procedure in
neurobiology, several repeated trials were collected from the
same macaque (n=63), and the corresponding LFPs recorded.
The LFP recording from each trial was decomposed using the
improved SSA algorithm and EMD. As proposed in [5], only
the components with a dominant frequency in the gamma
range [20,100] Hz (extended to avoid loss of information)
were retained and exploited for signal reconstruction.

Fig. 5 shows the smoothed Hilbert spectra of both the
EMD- and the SSA-reconstructed signal (Fig. 5-(a) and 5-(b),
respectively) from the analysis of signal in Fig. 4 (the original
Hilbert spectra were filtered with a 2-D moving average
square window of size equal to 31 samples). The superiority
of the improved SSA in tracking the relative enhancement
in the gamma-band over the post-stimulus interval is clearly
noticeable (Fig. 5-(b)).

Given the Hilbert spectrum of a signal H(f, t), the spec-
tral concentration of the gamma-band Sγ , around its main
frequency peak fc, on an interval [t1, t2], with respect to the
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Fig. 5. Hilbert spectra of the (a) EMD-reconstructed signal and (b) SSA-reconstructed signal from signal in Fig. 4. Both signals have been reconstructed
by exploiting only the components with a dominant frequency in the gamma-range [20,100] Hz.

Fig. 6. Hilbert spectral concentration of the gamma-band, Sγ , computed
on the EMD- and SSA-reconstructed signals (dotted and solid line, respec-
tively) of the 62 trials for the (a) pre-stimulus interval and (b) post-stimulus
interval; n.u.: normalized units.

total energy in the Hilbert spectrum, may be defined as:

Sγ =

∫ t2
t1

∫ 1.05fc
0.95fc

|H(f, t)|2 dfdt∫
T

∫ FS

0
|H(f, t)|2 dfdt

(2)

such that the higher Sγ is the higher the gamma-frequency
content of the analyzed signal is. T is the temporal length of
the signal, and FS its sampling frequency. Sγ was computed
for each EMD- and SSA-reconstructed signal, from each
trial, on two separated intervals: a pre-stimulus interval (t <
0), and one post stimulus (t ≥ 0). The results for 62 trials are
summarized in Fig. 6 (one trial was disregarded due to the
strong influence of the trend on the provided components).
On average, the higher energy content of the SSA compared
with the EMD components was clear, particularly for the
time interval starting after stimulus onset (paired Student’s
t-test: p < 10−4).

Application of the improved SSA algorithm to LFPs
from cortical visual area V1 showed to be able to resolve
LFPs into sets of components having different degrees of

oscillatory content. With respect to the energy content, SSA-
components in the gamma-band frequency appear to be
more meaningful than the intrinsic component provided by
EMD, thus providing a better description of the enhancement
generated by a visual fixation task. Hence, the improved
SSA algorithm is a promising tool to analyze single-trial
LFP recording to generate physiologically meaningful mea-
surements of oscillatory neural behavior in the used model
system. This promise needs to be put to the test in studies
of functional connectivity among different brain areas, and
also its theoretical validation needs further investigation.
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