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Abstract— In this study, electroencephalogram (EEG) signals
obtained by a single-electrode device from 24 subjects - 10
with Alzheimer’s disease (AD) and 14 age-matched Controls
(CN) - were analyzed using Discrete Wavelet Transform (DWT).
The focus of the study is to determine the discriminating
EEG features of AD patients while subjected to cognitive
and auditory tasks, since AD is characterized by progressive
impairments in cognition and memory. At each recording
block, DWT extracts EEG features corresponding to major
brain frequency bands. T-test and Kruskal-Wallis methods were
used to determine the statistically significant features of EEG
signals from AD patients compared to Controls. A decision tree
algorithm was then used to identify the dominant features for
AD patients. It was determined that the mean value of the low-
δ (1 - 2 Hz) frequency band during the Paced Auditory Serial
Addition Test with 2.0 (s) interval and the mean value of the β
frequency band (12 - 30 Hz) during 6 Hz auditory stimulation
have higher mean values in AD patients than Controls. Due to
artifacts, the less reliable low-δ features were removed and it
was determined that the mean value of β frequency band during
6 Hz auditory stimulation followed by the standard deviation
of θ (4 - 8 Hz) frequency band of one card learning cognitive
task are higher for AD patients compared to Controls and thus
the most dominant discriminating features of the disease.

I. INTRODUCTION

Alzheimers disease (AD) is a ”neuro-degenerative disease,

the most common form of dementia, third most expensive

disease and sixth leading cause of death in the United States.”

While no known cure exists, a number of medications are

believed to delay the symptoms of the disease [1]. Because of

its non-invasive and safe properties, electroencephalograph

(EEG) signal is considered to be a potential tool that may

complement current methods for early diagnosis of AD.

However, diagnosis of AD with EEG signals remains a

challenging problem as most of the existing methods are not

validated and require significant improvement [2].

There are several approaches to EEG signal analysis,

the most widely used being Fast Fourier Transform (FFT)

power spectral approach. FFT methods have been applied

to determine the discriminating features of AD in several

studies [2–6]. Some of the results include finding optimal

ranges of frequency bands, which have a better classification

performance than the traditional δ, θ, α, and β bands [2], as

well as an increase of δ and θ global field power (GFP) and a
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reduction of α GFP when compared to Control subjects [3].

Also, an increase in δ and θ power and a decrease in α and

β power have been reported [5]. Because brain EEG signals

appear non-stationary, FFT based methods have been shown

to have an inherent disadvantage [7]. A second approach for

analyzing EEG signal in AD patients is nonlinear dynamics

approach, e.g. [5] [8]. However, this approach is computa-

tionally too complex and require extensive experience [9].

Another promising approach is the wavelet power spectral

analysis [7]. The wavelet transform [10] is suitable for ana-

lyzing transient signals, since it contains both frequency and

time information. For spectral analysis, wavelet transform

can be more suitable than Fourier transform [11] depending

on the properties of the mother wavelet [7]. There are

two types of wavelet analysis: continuous wavelet transform

(CWT) and discrete wavelet transform (DWT). DWT is

generally more computationally efficient than CWT [12].

Both DWT and CWT have been used in EEG analysis and

classification [13–15]. However, to our knowledge, very few

studies have used DWT to extract AD features from AD

derived EEG signals (e.g. [16], [17]) and evidence exists

demonstrating that one can classify normal and abnormal

EEG signals in major brain frequency bands [18–20]. In

these studies, DWT was used to filter out noise at several

decomposition levels. At each level, the statistical features

such as minimum, maximum, mean, and standard deviation

are computed. These quantities were then used for classifica-

tion of normal and abnormal EEG signals, using classifiers

such as neural network [19], fuzzy systems [20], support

vector machine, and decision trees.

Alzheimer’s disease is characterized by progressive im-

pairments in cognition and memory [5]. Cognitive tasks have

been extensively used to diagnose brain arrhythmias. The

tasks of particular interest include attention [21], identifi-

cation [22], and the Paced Auditory Serial Addition Test

(PASAT) which represents a reliable method with persuasive

clinical evidence [23]. Hence, EEG recorded during these

activated states can help provide a complementary tool for

more accurate assessment of brain abnormalities.

In this study we specifically focus on EEG recordings

from AD and CN subjects under cognitive tasks, PASAT, and

auditory stimulations. We use DWT for feature extraction

from EEG signals in five decomposition levels, where at

each level statistical features of the signal are calculated.

The discriminating features of AD were determined using

two statistical testing methods, t-test and Kruskal-Wallis, and

a decision tree algorithm identified the most significant and

dominant features of AD.
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Fig. 1. Raw EEG signal of a CN patient before (top) and after (bottom)
artifact detection . Y-axis is arb units from the onboard ADC

II. CLINICAL STUDY AND DATA COLLECTION

EEG signals were recorded through a single-dry electrode

device at position FP1 (based on a 10-20 electrode place-

ment system) with a Bluetooth enabled telemetric headset.

The headset sample rate is fs = 128 Hz. However, the

effective sample rate was fs = 125 Hz in our experiments.

Frequencies over 60 Hz and below 1 Hz are not reliable and

filtered out [24]. Data from 24 subjects were considered,

including 10 AD and 14 age-matched controls (CN). The

EEG recording sessions in each case began with resting eyes-

closed and eyes-open states and then proceeded to attention,

identification, card flipping cognitive tasks, followed by

PASAT and auditory stimulation tasks, and concluded with

the resting eyes-closed and eyes-open states. Specifically,

they were comprised of approximately seventeen 90-second

intervals, for a total of about 25 minutes per subject. The

duration and description of each task is presented in table I.

The electrically isolated telemetric EEG headset elim-

inated frequently observed artifacts including line noise.

Furthermore, we subtracted the DC offset of EEG sig-

nals and implemented a relatively simple artifact detection

to eliminate eye-blinks and other large amplitude artifacts

which appear to have amplitudes greater than 4.5σ (standard

deviation). An algorithm was developed to detect such sig-

nals, nullify, and then reconstruct the nulled signals using

FFT interpolation of the trailing and subsequent recorded

data [24]. For illustrative purposes, Fig. 1 shows all EEG

recordings for a single subjects in arbitrary units from the

ADC before and after artifact detection.

III. DISCRETE WAVELET TRANSFORM

DWT analyzes the signal at different resolutions through

the decomposition of the signal into several successive fre-

quency bands by utilizing a scaling and a wavelet function,

associated with low-pass and high-pass filters. The original

EEG signal forms the discrete time signal x[n] and is first

passed through a half-band high-pass filter g[.], and a low-

pass filter h[.]. Filtering followed by sub-sampling constitutes

TABLE I

DESCRIPTION AND DURATION OF EACH TASKS FOR EEG RECORDINGS.

Task No. Task Description Task
Duration (s)

1 – 6 Three consecutive resting 540
eyes closed and eyes open (EC1 – EO6)

7 Cognitive task 1: 90
Attention (CG1)

8 Cognitive task 2: 90
Identification (CG2)

9 Cognitive task 3: One Card 90
Learning (CG3)

10 Cognitive task 4: One Card 90
Back (CG4)

11 PASAT: 2.4 (s) intervals 90
(P-2.4)

12 PASAT: 2.0 (s) intervals 90
(P-2.0)

12 PASAT: 1.6 (s) intervals 90
(P-1.6)

14 Auditory Stimulation, Left = 397, 90
Right = 403 with 6 Hz (AS1)

15 Auditory Stimulation, Left = 394, 90
Right = 406 with 12Hz (AS2)

16 Auditory Stimulation, Left = 391, 90
Right = 409 with 18 Hz (AS3)

17 – 18 One resting eyes closed 180
and eyes open (EC7 and EO8)

one level of decomposition and can be expressed as follows:

d1[k] = yhigh[k] =
∑

n

x[n].g[2k − n], (1)

a1[k] = ylow[k] =
∑

n

x[n].h[2k − n], (2)

where d1 and a1 are level 1 detail and approximation

coefficients, respectively, yhigh[k] and ylow[k] are the outputs

of the high-pass and low-pass filters after the sub-sampling.

This procedure, called sub-band coding, is repeated until

no more sub-sampling is possible. At each level, the pro-

cedure results in half the time resolution and double the

frequency resolution. In this research, we used Daubechies2

(db2) mother wavelet which has been reported to have a

better accuracy compared to most other wavelets [20]. Since

the EEG signal in our study has the frequency range of

1–60 Hz, we went through five levels of decompositions.

The frequency range of each of these levels and their

corresponding major EEG frequency band are shown in table

II. D1 – D5 along with the A5 consist DWT representation of

the EEG signal in our analysis. At each level, we compute the

minimum, maximum, mean, and standard deviation values of

the filtered data as the statistical features.

IV. DISCRIMINATING FEATURES

A. Statistical Testing

We initially used a two-tailed t-test to compare the signals

from 10 AD patients with 14 Controls. However, t-test

requires normal distribution of data which is not a valid

assumption for some of the data in our study. Hence, we used

the Kruskal-Wallis test, a non-parametric method based on

Chi-squared distribution to improve the statistical analysis.
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TABLE II

DWT SUB-BAND FREQUENCIES AND THEIR CORRESPONDING EEG

FREQUENCY BANDS.

Sub band Frequency Range Corresponding EEG
(Hz) frequency band (Hz)

D1 30 – 60 γ (> 30)

D2 15 – 30 β (13 – 30)

D3 7.5 – 15 α (8 – 13)

D4 3.75 – 7.5 θ (4 – 8)

D5 1.875 – 3.75 δu (2 – 4)

A5 1 – 1.875 δl (0 – 2)

The results of these two statistical testing methods and their

p-values are shown in Table III. These results represent all

the statistically significant discriminating DWT features of

AD patients in cognitive task, PASAT, and auditory stimula-

tion states. It is clear that both tests yield similar results,

but the Kruskal-Wallis method is more conservative. The

reliable discriminative features from Kruskal-Wallis testing

method are max{D3} (α) from attention cognitive task,

mean{A5} (lower δ) from one card learning cognitive task,

min{D3} (α) from one card back cognitive task, mean{D2}
(β) from PASAT 2.4 (s) interval task, mean{A5} (lower δ)

from PASAT 2.0 (s) interval task, and mean{D2} (β) from

auditory stimulation at 6 Hz.

TABLE III

SIGNIFICANT DISCRIMINATING FEATURES BASED ON T-TEST AND

KRUSKAL-WALLIS TEST.

Task Feature-t-test Feature-Kruskal

CG1 max{D3}, p = 0.030 max{D3}, p = 0.046

CG2 min{D2}, p = 0.043 not significant

CG3 min{D1}, p = 0.046 mean{A5}, p = 0.046

CG4 min{D3}, p = 0.007 min{D3}, p = 0.016

P-2.4 mean{D2}, p = 0.008 mean{D2}, p = 0.023

P-2.0 mean{A5}, p = 0.031 mean{A5}, p = 0.024

AS-1 mean{D2}, p = 0.044 mean{D2}, p = 0.004

B. Decision Tree

Since many features were identified in our study, we

applied the decision tree, a classification algorithm, to de-

termine the most dominant discriminating feature of AD pa-

tients. The tree is made up of nodes and branches where the

nodes are designated as either internal or a terminal. Internal

nodes can split into two branches while the terminal nodes

cannot [25]. Unlike the statistical testing methods, which use

data distribution for comparison of different groups, decision

tree attempts to segregate data using different splitting crite-

ria. In this study, we used a well-known split criteria, which

is Gini index. The Gini index is defined as [26]:

Gini(t) =
∑

i

pi(1− pi) (3)

where pi is the relative frequency of class i at node t, and

node t represent any node at which a given split of the data is

performed. pi is determined by dividing the total number of

observations of the class by the total number of observations.

Fig. 2. Decision tree result for all sub-bands. x1 is the mean value of
lower δ band of PASAT 2.0 (s) interval task and x2 is the mean value of
the β band of auditory stimulation at 6 Hz.

The result of decision tree algorithm for comparing the AD

and CN subjects in this study is shown in Figure 2. Accord-

ing to these results, mean{A5} of P-2.0 task was the first and

most dominant discriminating feature of AD patients. The

second discriminating feature was the mean{D2} of AS1

task. These results indicate that if the mean value of lower δ

frequency band of PASAT with 2.0 (s) interval of a subject

is greater than -0.014 and the mean value of β frequency

band of auditory stimulation at 6 Hz of the subject is also

greater than -0.004 (following the red line in decision tree),

then the subject is identified as an AD patient. Both of these

features were also determined to be statistically significant

by t-test and Kruskal-Wallis testing methods, adding to the

reliability of the decision tree classification.

However, the analog filters employed in the headset had a

cutoff of approximately 1 to 2 Hz. Those filters have undis-

closed properties making the signal in lower δ frequency

band (1-2 Hz) unreliable. Furthermore, our simple artifact

detection algorithm is amplitude-based and may not have

removed all of low frequency artifacts. Hence, we removed

the features corresponding to low-δ frequency band (A5, 1-2

Hz) and re-applied the decision tree algorithm. The result

is shown in Figure 3 where the mean{D2} of AS1 was

determined to be the first and most dominant discriminating

feature of AD patients. The second discriminating feature

was changed to the standard deviation of D4 of CG3. These

results indicate that if the mean value of the β frequency

band of auditory stimulation at 6 Hz of a subject is greater

than -0.003 and the standard deviation of the θ frequency

band of the one card learning cognitive task of the subject

is also greater than 1.83, then the subject is identified as an

AD patient.

V. CONCLUSIONS

We have used a discrete wavelet transform to determine

the discriminating features of EEG signals from AD pa-

tients during several different cognitive task, the PASAT,

and auditory stimulation states. Since AD is characterized

by progressive impairments in cognition and memory, the

underlying hypothesis is that EEG recorded during these

activated states will have clearer discriminating features than

resting states. To the best of our knowledge, this is the
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Fig. 3. Decision tree result after removal of A5. x1 is the mean value
of β band of auditory stimulation at 6 Hz (AS1) and x2 is the standard
deviation value of the θ band of one card learning cognitive task (CG3).

first study with DWT to extract AD features from EEG

signals in activated states. DWT statistical features from

5 level of decomposition were computed and compared

during activated states. Many discriminating features were

identified, from which a decision tree algorithm identified the

most dominant ones required to classify AD patients. Based

on these results, we have classified AD patients as those

subjects with higher mean EEG low-δ band during PASAT

2.0 (s) interval and higher mean EEG β band during 6 Hz

auditory stimulation. A second classification was achieved

by removing the less reliable low-δ band features. In this

case, we classified AD patients as those subjects with higher

mean EEG β band during 6 Hz auditory stimulation and

higher standard deviation of θ frequency band of one card

learning cognitive task.

Based on this research, we suggest that further serial

studies of AD patients and Controls might be useful in

showing normal rates versus accelerated rates of change in

the AD patients. Such studies may particularly be useful

for patients with mild cognitive impairment (MCI) as a

means of tracking their progression to AD. In addition,

PASAT and auditory stimulation recordings may separate

mildly impaired subjects from controls. Cognitive testing for

minimally impaired subjects may also form a great baseline,

that should be followed over time.
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