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Abstract—This study establishes the effectiveness of event
related synchronisation (ERS) features for a system paced brain
computer interface (BCI). In particular, the relationship between
the duration of motor imagery (MI) and the quality of the
features extracted from the ERS is investigated. To this end,
two groups of users performed brief (2s) or sustained (4s) MI,
and offline single trial BCIs were validated on each group based
on features extracted from the EEG before, during and after
MI. The BCIs were designed to recognise two intentional control
tasks and a no-control state. Cross-validated results indicate that
brief MI leads to more informative ERS features than sustained
MI.

I. INTRODUCTION

Brain computer interfaces (BCIs) are an active field of
biomedical signal processing research, with the direct goal of
providing communication and control pathways for severely
disabled patients [1]. The canonical BCI relies on interpret-
ing electroencephalogram (EEG) characteristics in order to
control, for example, a cursor, a speller, or an automated
wheelchair [2–4].

Motor imagery (MI) BCI consists in classifying imagined
movements, typically of the individual hands, based on the
spatial distribution of power in particular frequency bands of
the EEG during the event related desynchronisation (ERD)
complex. The focus of much of the recent literature has thus
centered on improving ERD based BCIs via more sophisti-
cated spatial filters [5], adaptive classifiers [6] and methods to
reduce the effects of the inter-session [7] or inter-subject [8]
variability of the EEG.

The ideal MI BCI can be defined as requiring all the
following: high accuracy in order for the user to be able
to use the system without frustration, a large number of
recognisable tasks to maximise the throughput of the system,
a short training/calibration period so that the user may use
the system online without numerous/long calibration sessions,
a short setup time with regards to placing the sensors on the
user, and finally self-paced operation is desirable for numerous
MI based applications, such as navigation.

One type of BCI which has been described recently is the
“Beta-rebound” based BCI, which effectively uses the event
related synchronisation (ERS) features that occur following
the termination of MI [9–11]. Such a system has a function
analogous to a button press, in that a single intentional control
(IC) task, such as feet movements, is distinguished from a
no-control (NC) state. The advantages of this type of system
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are a very short calibration period, a short setup time due to
requiring few electrodes, and self-paced operation.

Here, the concept of a “Beta-rebound” BCI is extended into
an ERD/ERS BCI, which can distinguish between 2 IC tasks
and has NC support, i.e. a 2-task system-paced BCI [12].
A key aspect of creating an ERD/ERS BCI is designing the
experiment in such a way that the ERD and ERS features are
informative. However, many studies discuss real movements
[13, 14], or are limited to MI in a single IC task [15]. Recent
results found that the beta rebound associated with MI exhibits
more lateralisation in EEG activity following brief cues rather
than sustained cues [16]. This implies that greater accuracy can
be achieved in differentiating 2 tasks in an ERD/ERS BCI if
brief cues are utilised. To validate this hypothesis, data from
two groups of subjects were used, with one group performing
brief MI and the other performing sustained MI.

This article compares the use of brief MI and sustained MI
for use in an ERD/ERS based BCI, and is organised as follows:
in section 2, the experimental protocol is presented, in which
the process of obtaining data for the short MI experiment is
explained. An ERD/ERS BCI algorithm is proposed in section
3, and the subcomponents of the algorithm are discussed.
Results comparing brief MI to sustained MI are presented in
section 4 and the results of the group performing brief MI are
analysed in greater detail. Finally, a discussion of the findings
and further work can be found in section 5.

II. EXPERIMENTAL PROTOCOL

This study reports results from two groups of subjects,
one group performing brief MI, whereas the other performed
sustained MI. For both groups the IC tasks available to the user
were left hand, right hand and both feet. The brief MI data
consisted of data from 10 subjects recorded at INRIA Sophia
Antipolis, who were presented 2s cues during the experiment.
The format for each trial is shown in Figure 1. One block
consisted of 10 presentations of each task, followed by a brief
pause of 1-2 minutes. Subjects first performed 1 block of real
movements in order for them to become familiar with the
format of the trials. The subjects then performed 10 blocks of
MI, which are used as part of this study. The data recording
and cue presentations were performed using OpenVibe [17].
The mean number of trials per subject used in this experiment
was 357 for the brief MI group.

The sustained MI data consisted of 4 subjects performing
MI for a duration of 4s, and was obtained from a publicly
available dataset from BCI competition 4 (dataset 1, training
data, artificial data subjects were removed from the group)
[18]. The format of each trial for the sustained MI group differs
in that the ERD block lasted 4s, no cross was shown during
ERS, and the inter-trial rest period was fixed at 2s. For more
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Fig. 1. Cue presentation format for the brief MI group. Note that a fixation
cross is displayed at all times other than during the cue presentation.

information on this dataset, the interested reader is directed
to [19]. The mean number of trials per subject used in this
experiment was 321 for the sustained MI group.

For both groups, 5 fold cross-validation, with contiguous
folds, was employed to obtain an estimate of performance.
Identical model and feature selection routines were employed
in the training stage of both groups, all of which were
performed offline using Matlab. For each group, 4 variations
of the algorithm were tested, based on features obtained from
different time windows with respect to the cue. The timing
information of the windows is shown in Figure 2. For each
group, BCI algorithms were designed based on features from
the ERD, ERD+ERS, pre-stimulus+ERD+ERS and ERS only.

III. METHODS

The overall design of the system is given in Figure 3. For
each trial, a spectrogram was extracted for each channel (C3,
Cz, C4 in this case). The most discriminant features from the
spectrogram coefficients were determined in training, as de-
tailed below, in order to reduce the high dimensionality of the
feature space. The optimal feature vectors were then analysed
by two cascaded SVM classifiers to determine whether the
trial corresponded to one of 2 tasks (determined in training)
or the NC task. The first SVM was used to determine whether
data was from the NC-class or one of the IC classes (data
from both IC classes were pooled together in training), and if
an IC task was detected, the second SVM determined whether
the data belonged to IC task 1 or IC task 2.

The preprocessing of stage was identical for both datasets.
First the data was downsampled by a factor of 2, from 256
to 128Hz for the brief MI group and from 200 to 100Hz for
the sustained MI group. A bandpass filter was then applied
to retain only the activity in the 4-40Hz band. Note that only
referential channels C3, Cz and C4 are employed by the BCI.

The parameter selection stage of the training algorithm was
used to determine which 2 of the 3 MI tasks were most
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Fig. 2. Timing information for the cued trials.

separable (The 2 MI tasks were pre-selected for the sustained
group). Subsequently, the parameters of the algorithm, such as
the number of features to be retained and the SVM training
parameters, were selected. Every parameter was selected to
maximise the 5x5 cross fold validated training accuracy, that
is, the cross-fold validation procedure was repeated 5 times
with random sampling of each fold. Accuracy was calculated
as the percentage of correctly classified trials across all three
classes employed in testing.

The spectrograms were based on short time Fourier trans-
forms with 1s windows and 75% overlap between windows,
resulting in a resolution of 1Hz in the frequency axis and
a 0.25s in the time axis. The spectrogram coefficients used
as features were limited to the 8-30Hz range. T-tests were
used for feature selection, by performing 2 way t-tests of the
spectrogram coefficients between 2 classes. Features were then
selected if their corresponding p-value was below a threshold,
set during parameter selection. Note that in this way, 2 distinct
feature sets were computed, one for NC vs both tasks and one
for task1 vs task2. Finally, the C parameters of each linear
SVM were set during parameter selection.

IV. RESULTS

A. Brief vs sustained imagination

The accuracies of the algorithms are presented in Table I.
Note that a large increase in accuracy over the ERD features
is observed for the ERD/ERS features in the brief MI group,
however ERD/ERS features result in only minor improvements
over ERD features for the sustained MI group. For both the
brief and sustained MI groups, the addition of pre-cue features
did not result in any increase in accuracy.

In the brief MI group, it can be seen that using only ERD
features or only ERS features yield commensurable results. In
contrast, the sustained MI group results show that the ERD
features alone are more informative than the ERS features.
Moreover, the discriminative information of the ERS features
after sustained imagination is predominantly redundant, as
only a minor improvement in accuracy is observed between
ERD and ERD/ERS for the sustained MI group.

B. ERD/ERS BCI with brief MI

The ERD/ERS BCI with brief MI being the main focus
of this study, the results of this algorithm are analysed in
detail in this section. First, it should be noted that there is
a high variability in the accuracies obtained in the brief MI
group. Two subjects achieved accuracies of approximately
50%, while accuracies above 80% were obtained for 4 other
subjects, resulting in a standard deviation of 14.2% for the
mean accuracy of 72.1%.

Group ERD ERD/ERS PRE+ERD/ERS ERS only
Brief 63.7 ± 9.6 72.1 ± 14.2 70.7 ± 15.1 58.9 ± 15.4

Sustained 69.0 ± 4.9 71.2 ± 4.1 70.8 ± 4.8 51.9 ± 3.2

TABLE I
ACCURACIES OBTAINED IN 5 FOLD CROSS-VALIDATION TESTING.
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Fig. 3. Block diagram of BCI algorithm. Dashed lines correspond to training stage.

The mean sensitivity of the NC class over all subjects was
75%, while the sensitivity averaged over both IC tasks was
69.8%. Over all subjects and all folds, the proportion of pairs
of tasks chosen was 20% for LH&RH, 30% for LH&F and
50% for RH&F, for a dataset composed of 80% right-handed
subjects and 20% left-handed subjects. It was observed that for
any given subject, no single pair of IC tasks was persistently
selected over all 5 cross validation folds, which suggests that
more than 2 IC tasks may be differentiated using the proposed
feature representation.

Average spectrograms are plotted for one subject from the
brief MI group in Figure 4, in order to help the reader visualise
the ERD/ERS complex which is being exploited by the system.
An accuracy of 82.7% was achieved for this subject. The
spectrograms are arranged according to channels horizontally
and according to tasks vertically, with time 0 corresponding to
the onset of the 2 second cue. For the NC trials, it is clear that
neither ERD nor ERS occurs as the subject does not perform

MI. A 2s ERD followed by a 2s ERS is clearly visible on all
channels for both left hand MI and right hand MI. However,
it can be seen that there is relatively more suppression of mu
and beta rythms during ERD and a larger beta rebound in the
contralateral side of each MI task. This is particularly visible
in the spectrograms for right hand MI, where the suppression
and rebound of beta rythms is particularly clear in C3, but less
obvious in C4. It should be noted that the number of features
retained by the algorithm after feature selection was 246 for
NC versus both tasks, and 155 for task 1 versus task 2.

V. SIGNIFICANCE AND FURTHER WORK

The results of this study provide two interesting conclusions.
First, in comparing brief MI to sustained MI, it was observed
that the inclusion of ERS features resulted in a significant
increase in accuracy for the brief MI group, but only a
marginal increase in accuracy for the sustained group. These
results, the first in single trial analysis, thus confirm previous
reports that brief MI leads to more lateralisation of ERS [16].

Fig. 4. Average spectrograms in all 3 electrodes for subject 6 of the brief MI group during NC and while performing left hand and right hand movement
imagination.
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The second conclusion of this study comes from the analysis
of the ERD/ERS BCI with brief MI. A mean cross validation
accuracy of 72.1% was obtained, despite the fact that 2
subjects with low accuracy were present in the group. This
suggests that an ERD/ERS BCI with brief MI is realisable for
most subjects without the need for prolonged subject training.

One question of particular importance, which is not an-
swered here, is the influence of feedback on the ERS. As has
been shown here, longer MI leads to less informative ERS
features due to reduced lateralisation of the beta rebound.
However, in an online implementation, the subject would
need to perform MI and then wait approximately 2s for the
algorithm to acquire the ERS features before a decision can be
made. Whether this waiting (or anticipation) period modulates
the ERS complex must therefore be established by carrying out
a follow-up experiment online.

As discussed in the results section, the pair of IC tasks
chosen in training was not persistent over all cross validation
folds. This indicates that any IC task can be differentiated from
at least one other IC task and NC. This observation suggests
that a similar approach could be used to discriminate between
all 3 IC tasks and a NC state with good results.

The BCI presented here is a system paced algorithm, i.e.
a trial structure exists and NC trials are supported. Ideally,
the BCI would support self-paced operation, for example in a
navigation scenario the multiple IC tasks could be mapped
to motion and direction commands. However, the system
currently requires MI of exact duration, due to the spectrogram
features and training of the SVM, i.e. 2s of ERD are expected.
This condition could be relaxed by modelling the duration
of the ERD and ERS probabilistically. Such a paradigm has
previously been proposed [20].

Alternatively, such a system could be used for correction or
labelling of decisions, when a user receives immediate feed-
back based only on ERD. In other words, the user performs
motor imagery and receives feedback from a BCI based on
ERD, however a second BCI is used to classify the ERD/ERS
following the termination of motor imagery to provide a
secondary decision, provided that the ERS is not corrupted by
the feedback of the ERD BCI. This secondary decision could
then be used for error correction, or as a label for adapting
the ERD classifier or simply to monitor performance.

VI. CONCLUSION

A 3-class BCI using 2 IC tasks and a NC state was proposed
based on ERD and ERS features. It was demonstrated that
employing brief MI led to more informative ERS features
in contrast to sustained MI, for which the addition of ERS
features did not significantly improve results. The brief MI
results indicated that an ERD/ERS based BCI is a feasible
control interface for subjects to use with limited training, with
8 out 10 subjects obtaining cross-fold validation accuracies
above 65% for a 3 task paradigm. Further work will focus on
validating these results through online testing and improving
the functionality of the BCI.
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