
Real-Time Source Separation

on a Field Programmable Gate Array Platform

Valerie S. Hanson1 and Kofi M. Odame1

Abstract— In this paper, we present a real-time implementa-
tion of the ideal binary-mask algorithm, which is a promising
approach for enhancing speech intelligibility. Our implemen-
tation is hardware efficient, making it suitable for embedded
biomedical devices such as hearing aids and cochlear implants.
We tested our algorithm implementation on an FPGA platform,
and produced results that verify that it effectively performs
source separation with 25 µs latency.

I. INTRODUCTION

Hearing impaired individuals have more difficulty inter-

preting speech in the presence of noise than do individuals

with normal hearing, even when corrective hearing devices

are used. We are developing an algorithm for hearing pros-

thetic devices that improves speech intelligibility in noisy

environments. The algorithm is based on beamforming, dy-

namic user feedback control and source separation, as shown

in Fig. 1.

Our source separation scheme is a modified version of

the ideal binary mask (IBM) algorithm that was introduced

by Boldt [1]. With IBM-enhanced speech, normal hearing

listeners have reported speech intelligibility scores of nearly

100%, in the presence of 4 overlapping speakers [2]. The

IBM provides near 100% intelligibility even when the signal-

to-noise ratio of the target speech (that is, the speech to which

the listener is attending) to background noise is as low as -10

dB [3].

To date, the IBM algorithm has mostly been performed

either offline or in simulation [1], [2]. Saruwatari et al.

described an online IBM algorithm [4], but their imple-

mentation has a 3 s latency, a delay that is perceptible and

objectionable to human listeners [5]. For the algorithm to be

relevant in a practical hearing prosthetic device, it must be

implementable in an embedded system and it must execute

in real time, with sub-millisecond latency.

In this paper, we will describe our real-time implemen-

tation of the IBM algorithm, realized in hardware on a

field programmable gate array (FPGA). The low latency, low

power and low hardware utilization of our implementation

make it practical for use in hearing aids and cochlear

implants.

II. OVERVIEW OF IDEAL BINARY MASKING

A. Auditory Masking

Speech is very sparsely distributed in the time-frequency

domain [6]. Hence, it is hardly ever the case that a competing

1Authors with Thayer School of Engineering at Dartmouth College,
Hanover, NH 03755 USA. (e-mail: valerie.s.hanson@gmail.com)

Microphone

Array

3
utput

User

Fig. 1: Top level diagram of speech intelligibility-enhancing system.
The FPGA must analyze user control signals, perform beamforming
and output a source-separated signal in real time. This requires
efficient use of hardware and careful timing of instructions.

noise (e.g. background clatter) would overlap with – or

overwhelm – a time-frequency region that contains speech.

However, competing sounds that occur close to a speech-

containing time-frequency region can render the speech im-

perceptible, via the psychoacoustic phenomenon of auditory

masking [7]. So, due to auditory masking, there is a loss of

speech intelligibility even in moderate SNR conditions. The

auditory masking effect – and loss of speech intelligibility

– is much more pronounced in individuals with hearing

impairment than in those with normal hearing [8].

B. Improving Speech Intelligibility

The idea of the IBM algorithm is to remove those portions

of the time-frequency domain that contain competing sounds,

as they could potentially cause auditory masking of the target

speech [9].

The first step of the IBM algorithm is to perform a

spectral analysis to map the input signal into the time-

frequency domain. This is followed by a classification step,

during which the target speech regions of the input signal

are distinguished from competing noise regions. Finally, the

algorithm removes the noise regions and retains the target

speech regions. Fig. 3 illustrates the spectral analysis and

classification phases of the IBM algorithm.

Forming the ideal binary mask requires access to the

unmixed target and noise signals. As these signals are

unobtainable in practice, they instead have to be estimated

via beamforming as described in [1]. The estimated signals

are mixtures of target and noise signals, with Mixture 1

consisting mostly of the target, and Mixture 2 consisting

mostly of the noise. The mixtures are input to the IBM

algorithm, as illustrated in Fig. 2.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

2925978-1-4577-1787-1/12/$26.00 ©2012 IEEE

Envelope Detection

Band-pass

Filter Bank

Band-pass

Filter Bank
Low-pass Filter

Classification

Mix. 1

Mix. 2 Rectifier

Envelope Detection

Low-pass FilterRectifier

�

Output

Fig. 2: Block diagram of the IBM algorithm data path.

Fig. 3: (a) The spectral analysis phase and (b) the classification
phase of the IBM algorithm for a speech sample masked by 2 chirp
signals. The white pixels have been classified as noise and black
pixels have been classified as target speech.

In the IBM algorithm, the sound mixtures are each mapped

onto the time-frequency domain by performing spectral anal-

ysis with a bank of bandpass filters, followed by energy

extraction with an envelope detector (see Fig. 2). Each time-

frequency region is classified as either containing target

sound or noise, depending on the relative amount of energy

that is contributed by Mixture 1 and Mixture 2. The binary

mask is generated by the classifier, and it is applied to

Mixture 1 to separate target speech from noise [1].

III. IBM CHALLENGES

The performance of the IBM algorithm improves with

increasing spectral resolution. For instance, speech intelli-

gibility improves from 5% to over 65% when the number

of spectral analysis frequency bands is increased from 6

to 32 for -5 dB SNR [10]. Also, additional studies have

shown near 100% performance with -3 dB SNR for 128-

count filter banks [2]. This requirement for high spectral

resolution places a number of constraints on implementing

the IBM in a real-time embedded system.

High spectral resolution requires a large number of narrow

bandwidth, high-order bandpass filters. The IBM implemen-

tation must therefore have the capacity to store all of the

associated filter coefficients in memory. Further, these coef-

ficients must be stored at high resolution, which is necessary

to prevent numerical instability in the narrow bandwidth

filters. These considerations will all contribute to straining

the system’s memory resources.

During spectral analysis, the individual bandpass filtering

operations can be performed sequentially, or – since there are

no data dependencies between frequency bands – in parallel.

In the following subsections, we outline the constraints faced

with each of these approaches.

A. Latency Constraints

The IBM algorithm executes roughly 32,000 instructions

for every input sample, assuming the spectral analysis is

performed with a 128-channel filter bank.

With a sampling rate of 32 kSamples/second, and assum-

ing each instruction can complete in a single clock cycle,

a purely sequential implementation of the IBM algorithm

would require at least a 1 GHz clock rate. A digital signal

processor that ran at this clock rate would be incompatible

with the low power requirements of hearing prosthetic de-

vices [11], [12].

In theory, the entire chain of sequentially-executed instruc-

tions could be pipelined, which would allow the processor

to run at a clock rate equal to the sampling rate. However,

there would still be a latency of a few milliseconds, which is

long enough to be perceptible and undesirable to users [5].

B. Hardware Constraints with Fully Parallel Implementation

For a completely parallelized implementation of the IBM

algorithm, all 128 band-pass filters would be processed si-

multaneously for both mixture signals. Also, each individual

filter would itself have an internally parallelized implementa-

tion, as many of its operations are independent of each other.

With such aggressive parallelization, it is possible to execute

the entire IBM algorithm in 24 clock cycles.

Limitations arise because parallelization requires a ded-

icated set of hardware for each component that is run

simultaneously. For instance, to achieve a fully parallelized

implementation of the 128-channel filter bank as described,

3072 units of 18-bit hardware multipliers are required. This

design is unrealizable given that most FPGAs have the

capacity for less than 100 18-bit multipliers [13].

2926

IV. IBM HARDWARE IMPLEMENTATION

The computational complexity of the IBM algorithm

forces us to make careful choices in our filter design and

memory allocation. Also, it requires a data path that involves

sequential, parallel and nested pipelined processing in order

to fit the algorithm in a practical embedded system design.

The parallel and pipelined aspects of our novel data path

are easiest to implement on an FPGA platform. Also, the

level of parallelism in our data path can be easily expanded or

contracted as needed to fit the available hardware resources

of a given FPGA. Finally, FPGA implementation offers

lower energy consumption than that of a DSP, since most of

the computation is routed directly into hardware instead of

requiring processing resources to shuffle instructions around.

In this section, we describe the details of our FPGA imple-

mentation of the IBM algorithm.

A. Filter Structure

The filter structure implementation was chosen to optimize

memory and hardware allocation. Filters are designed as 8th

order IIR band-pass filters, formed by cascading two 4th

order filters, which are formed by cascading two second

order sections (SOS) in the direct form 2 implementation as

illustrated in Fig. 4. Justification for this design is as follows:

SOS

4

SOS

3

SOS

2

SOS

1

)2(
2

)1(
1

)()(−−−−⋅= kwakwakxgkw

)2(
2

)1(
1

)(
0

)(−+−+= kwbkwbkwbky

BPF

n
…

BPF

2

BPF

1

Spectral Analysis Classification

Mix. 1 BPF Bank Mix. 2 BPF Bank

Fig. 4: Nested filter levels contained in the spectral analysis stage.

• An IIR design is chosen over FIR because IIR imple-

mentation meets the small pass-band and sharp roll-off

constraints using far fewer history elements.

• An SOS implementation is chosen over the standard dif-

ference equation implementation in order to reduce the

required word-length needed to maintain filter stability.

• Direct form 2 (DF2) implementation is chosen to reduce

the total number of history elements required for pro-

cessing. This implementation stores only intermediate

histories as opposed to storing both input and output

histories, halving the total number of histories required.

• Cascading two 4th order filters to form the 8th order

filter is done for two reasons -Ű this halves the number

of coefficients needed, and places the cutoff at -6dB

instead of -3dB. This feature is important, because it

ensures that when summing the signals from adjacent

bands the magnitude at the cutoff frequency sums to 1.

B. Memory Allocation Design

This design optimizes the use of FPGA block RAM

(BRAM) components through address partitioning and opti-

mization of primitive concatenation. Hardware optimization

comes as a trade-off to memory access time. Fastest data

access is achieved by assigning all data for a given filter to

one address. This approach can be realized by concatenating

all data elements for a single filter into one single element.

While this design is time efficient, enabling simultaneous

access of all data, it prohibits efficient hardware allocation.

When configuring BRAM primitives there is some flexibil-

ity in the address width to data width trade-off, however

address width is always much larger than data width for

all configurations. Therefore, implementation of large word-

length data is achieved by concatenating multiple BRAM

components until the desired data width is formed for a

single address. When this design proved unrealizable on the

given hardware a new design was developed to optimize

memory allocation, by storing each piece of data as a single

32-bit entry. This design improves efficiency in setting the

aspect ratio of memory allocation to better match that of the

BRAM structure enabling deeper memory accessing through

address partitioning, and by conforming data to fit within

a pre-existing BRAM primitive (eliminating the need to

concatenate BRAM components).

C. Data Path Design

The two main components of the IBM algorithm are

spectral analysis and classification. For the spectral analysis,

we use two parallel n-channel banks of bandpass filters, one

bank for each mixture. Each of the two banks of filters

is implemented by reusing the same filter hardware, with

different coefficients, for n iterations of our primary data

pipeline as outlined in Fig. 5.

The filters used for spectral analysis consist of 4 cascaded

SOS structures, each of which requires 6 multiplications, as

shown in Fig. 4. Due to a limited number of multipliers,

each of the SOS structures is implemented by reusing the

same multiplier for 6 iterations of a secondary, nested data

pipeline. Pipelining the SOS is possible, because the only

data dependency is between w(k) and the b0w(k) operation;

placing the b1w(k−1) and b2w(k−2) operations between the

generation of w(k) and the execution of b0w(k) is sufficient

to prevent a data hazard.

After bandpass filtering the input to separate it into dif-

ferent frequency channels, spectral analysis is completed by

performing envelope detection on each of these channels.

The envelope detection hardware consists of a rectifier and

a low-pass filter. These hardware components execute fast

enough that they can be shared by Mixture 1 and Mixture 2

signals within the primary data pipeline (see Fig. 5).

After spectral analysis, the next stage in the primary

pipeline is the classification stage. The classifier hardware

consists of a comparator that determines which of the two

mixture signals has the larger envelope in a given frequency

channel. With the appropriate scaling parameters, the result

of this comparison represents an accurate classification of the

2927

corresponding time-frequency region as either containing the

target signal or noise [1]. The output of the classifer controls

the enable pin of an accumulate-and-store block. If the

classifier output is ‘1’, then it enables data from the Mixture 1

channel to be accumulated and stored. If the classifier output

is ‘0’, the current time-frequency region has been identified

as noise and the Mixture 1 data is discarded. This selective

accumulation and storage of the Mixture 1 signal across all n

frequency channels effectively reconstructs the target signal.

Our IBM implementation permits processing rates of 32

kHz for a 32 channel filter bank, 20 kHz for a 64 channel

filter bank, and 10 kHz for a 128 channel filter bank assuming

a 50 MHz clock. Additionally, this design leaves room for

increased degrees of parallelization if using newer hardware

with more multipliers.

F
re

q
u

en
cy

 C
h

an
n

el
 N

u
m

b
er

Time

Mixture 1 BPF

Envelope Detection

Classification

Accumulate & Store

i
i

+
 1

i
+

 2
i

+
 3

Mixture 2 BPF

Fig. 5: Timing diagram of the IBM processing chain.

V. RESULTS AND CONCLUSION

We tested our IBM implementation on a Xilinx Spartan

3A-XC3S700A FPGA. The design was realized using a 32

channel filter bank, processing data at a rate of 32 kHz, with

a 50 MHz clock. The processing latency was 25 µs, which is

perceieved as real-time by the human ear [5]. Data obtained

from real-time sampling of this system is shown in Fig. 6.

These results make it clear that real-time implementation

of IBM algorithms on an FPGA is feasible. The benefit of

an FPGA implementation is made clearer when looking at

the overall resource utilization consumed by this design as

outlined in Table I. This implementation consumes a small

fraction of the total resources available, indicating that this

algorithm can be successfully implemented in conjunction

with other audio-processing algorithms currently used in

hearing prosthetic devices.

TABLE I: FPGA resource utilization for IBM algorithm.

Total Used

Spartan 3 (XC3S700A)
BRAMs 20 4
MULTs 20 13

4-Input LUTs 11776 2856

Spartan 6 (XC6SLX25)
BRAMs 52 4
MULTs 38 13

Slice LUTs 15032 1512

Fig. 6: Real-time IBM results: (a) 0 dB SNR input (b) Output with
target speech separated from noise.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1128478, and by

The Neukom Institute for Computational Science.

REFERENCES

[1] J. B. Boldt, U. Kjems, M. S. Pedersen, T. Lunner, and D. L. Wang,
“Estimation of ideal binary mask using directional systems,” in Proc.

Int. Workshop on Acoustics, Echo, Noise Control, sept. 2008, vol. 16,
pp. 229 – 238.

[2] D. Brungart, P. Chang, B. Simpson, and D. Wang, “Isolating the
energetic component of speech-on-speech masking with ideal time-
frequency segregation,” J. Acoust. Soc. Amer., vol. 120, pp. 4007 –
4018, 2006.

[3] N. Li and P. C. Loizou, “Factors influencing intelligibility of ideal
binary-masked speech: Implications for noise reduction,” J. Acoust.

Soc. Amer., vol. 123, pp. 1673 – 1682, 2008.
[4] H. Saruwatari, Y. Mori, T. Takatani, S. Ukai, K. Shikano, T. Hiekata,

and T. Morita, “Two-stage blind source separation based on ica and
binary masking for real-time robot audition system,” in Intelligent

Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International

Conference on, aug. 2005, pp. 2303 – 2308.
[5] J. Agnew and J. M. Thornton, “Just noticeable and objectionable group

delays in digital hearing aids,” Journal of the American Academy of

Audiology, vol. 11, pp. 330 – 336, 2000.
[6] S. Rickard and Y. Ozgur, “On the approximate w-disjoint orthogonality

of speech,” in Acoustics, Speech, and Signal Processing (ICASSP),
2002.

[7] R. L. Wegel and C. E. Lane, “The auditory masking of one sound
by another and its probable relation to the dynamics of the inner ear,”
Phys. Rev., vol. 23, pp. 266 – 285, 1924.

[8] Q.-J. Fu and G. Nogaki, “Noise susceptibility of cochlear implant
users: The role of spectral resolution and smearing,” Journal of the

Association for Research in Otolaryngology, vol. 6, pp. 1438 – 7573,
2005.

[9] D. Wang, “Time-frequency masking for speech separation and its
potential for hearing aid design,” Trends in Amplification, vol. 12, pp.
332 – 353, 2008.

[10] N. Li and P. C. Loizou, “Effect of spectral resolution on the
intelligibility of ideal binary masked speech,” J. Acoust. Soc. Amer.,
vol. 123, pp. EL59 – EL64, 2008.

[11] M. Valente, Hearing Aids: Standards, Options and Limitations,
Thieme, 2 edition, 2002.

[12] Texas Instruments, “Tms320c5504 fixed-point digital signal processor
data sheet,” 2012.

[13] Xilinx, “Spartan-3a fpga family: Data sheet,” 2010.

2928

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

