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Abstract— Mapping the dynamics of neural source processes
critically involved in initiating and propagating seizure activity
is important for effective epilepsy diagnosis, intervention, and
treatment. Tracking time-varying shifts in the oscillation modes
of an evolving seizure may be useful for both seizure onset
detection as well as for improved non-surgical interventions
such as microstimulation. In this report we apply a multivariate
eigendecomposition method to analyze the time-varying prin-
cipal oscillation patterns (POPs, or eigenmodes) of maximally-
independent (ICA) sources of intracranial EEG data recorded
from subdural electrodes implanted in a human patient for
evaluation of surgery for epilepsy. Our analysis of a subset of
the most dynamically important eigenmodes reveals distinct
shifts in characteristic frequency and damping time before,
throughout, and following seizures providing insight into the
dynamical structure of the system throughout seizure evolution.

I. INTRODUCTION

Nearly 5% of patients with epilepsy are potential candi-
dates for surgical treatment. Surgery for epilepsy can have
a good chance of success if the brain region(s) generating
seizures can be accurately localized. For this purpose, in
selected cases recordings are acquired using intracranial
(subdural and/or depth electrode) recording for pre-surgical
evaluation. In previous work [1], we examined the spatial
and time-frequency dynamics of seizure generation and
propagation in an intracranial EEG recording by Dr. Worrell
at the Mayo Clinic (Rochester MN) using adaptive vector
autoregressive (VAR) models fit to source activations ob-
tained from Independent Component Analysis. We reported
multiple seizure stages corresponding to distinct shifts in
the spatial distribution of sources and inter-source connec-
tivity as well as spectral frequency of interaction. To better
understand the oscillatory structure of these seizure stages,
in this paper we extend our previous analysis and perform
an eigendecomposition of the VAR model into a system
of decoupled oscillators and relaxators (eigenmodes) with
characteristic damping times and frequencies. Our anaysis of
a low-dimensional subset of the most dynamically important
eigenmodes reveals distinct shifts in principal oscillation
patterns before, during, and after the seizure with progressive
frequency slowing from beta through alpha, theta, and finally
post-ictal delta. These shifts are temporally consistent with
previously reported changes in spatial source distributions
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and effective connectivity in this patient [1], [2]. We suggest
that examination of dynamically important eigenmodes may
be useful for identification of ictal onset while also providing
valuable insight into the principal resonance frequencies and
dynamical structure of the system during distinct stages of
the seizure. To our knowledge, this is the first such applica-
tion of multivariate eigendecomposition to intracranial source
data.

II. THEORY

A. Vector autoregressive modeling

Assuming that X = [x1 . . . xT ] is an M-dimensional zero-
mean weakly-stationary stochastic process of length T , we
can describe the linear dynamics of the state vector
xt = [x(1)t . . . x(M)

t ]T as a vector autoregressive (VAR[p])
process of order p:

xt =
p

∑
l=1

Alxt−l +ut (1)

where ut ∈ ℜM×1 is a zero-mean white noise process with
covariance matrix Σ =

〈
utuT

t
〉
.

The coefficient matrices, Al , can be estimated using a
number of approaches, including multivariate ordinary and
stepwise least-squares approaches, lattice algorithms (e.g.
Vieira-Morf) or state-space models (Kalman filtering) [3].
Neumaier and Schneider [4] provide an efficient stepwise
least-squares algorithm which we use here. To handle non-
stationary data, we model the time-varying cortical dynamics
using a simple segmentation approach in which we fit
separate VAR[p] models to a sequence of highly-overlapping
locally-stationary windows [6].

B. Decomposition of a dynamical system into eigenmodes

Using the eigendecomposition method of Neumaier and
Schneider [7], it can be shown that a stable M-dimensional
VAR[p] model can be decomposed into Mp, M-dimensional
decoupled eigenmodes, which can each be characterized as
an oscillator or relaxator with a characteristic frequency and
damping time. The dynamics of the eigenmodes can be
described by a system of Mp univariate VAR[1] models cou-
pled only by the covariance of the noise terms. Analysis of
the eigenmodes can provide insight into the linear dynamics
of the system under observation.

In brief, we begin by noting that the VAR[p] process
described in equation 1 is equivalent to the VAR[1] process.

x̃t = Ãx̃t−1 + ũt (2)
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with augmented noise vector ũt = [uT
t 0 . . . 0]T ∈ ℜMp and

augmented state vector x̃t = [xT
t xT

t−1 . . . xT
t−p+1]

T ∈ℜMp and
with coefficient matrix

Ã =


A1 A2 · · · Ap
I 0 0 0
0 I 0 0
0 0 I 0

 ∈ℜ
Mp×Mp

and singular noise covariance matrix

Σ̃ =
〈
ũt ũT

t
〉
=

(
Σ 0
0 0

)
∈ℜ

Mp×Mp

Note that x̃t represents a delay embedding of the original
state vectors xt . If Ã is nonsingular then Ã = QΛQ−1 where
the columns of Q are the eigenvectors (eigenmodes) of
Ã and Λ = diag(λk) for k = {1, . . . ,Mp} is the associated
diagonal matrix of eigenvalues. The original state and noise
vectors can then be represented as x̃t = Qx̃′t , ũt = Qũ′t with
eigenmode coefficient vector x̃′t = [x̃(1)t . . . x̃(Mp)

t ]T and noise
vector ũ′t = [ũ(1)t . . . ũ(Mp)

t ]T . Note that x̃′t = Q−1x̃t is a linear
transformation of the delay-embedded state vectors into the
coordinate system of the eigenvector basis. Substituting these
expansions into Eq. 2 for the VAR[1] model, and using the
diagonality of Λ, we can represent the coefficient vectors, x̃′t
as a system of univariate VAR[1] models x̃(k)t = λkx̃(k)t−1+ ũ(k)t
which are coupled only via the transformed, augmented
covariance matrix of the noise coefficients: Σ̃′ = Q−1Σ̃Q−1∗.

In the complex plane, the expected values of the eigen-
mode coefficients describe a spiral 〈x̃(k)t+l〉 = λ l

k〈x̃
(k)
t 〉 =

e−l/τk e(argλk)ıl〈x̃(k)t 〉 with damping time τk = −1
Fs ln |λk|

and

characteristic frequency fk =
Fs|argλk|

2π
. Here Fs denotes the

sampling rate of the time series. The damping time (also
known as the e-folding time [8]) denotes the time required
(here in units of seconds) for an initial amplitude |x̃(k)0 |= q
to decay to |x̃(k)τ | = q/e. As Von Storch notes in his review
on POP analysis [8], an eigenmode analysis using the linear,
stationary model (Eq. 2) preferentially “sees” an oscillation
in its mature state when noise is relatively small and damping
is due to nonlinear and other, unobserved, processes. The
damping time (which is positive and bounded for a stable
VAR model) provides a statistical measure of how long, on
average, the signal is seen before stochastic noise, as well as
unobserved or nonlinear dynamical processes become more
and more important.

An eigenmode with eigenvalue λ can be characterized as
a stochastically forced oscillator if λ is either complex or
negative and real. Conversely, if λ is real and positive, the
eigenmode is characterized as a relaxator with characteristic
frequency fλ = 0. In contrast to a damped oscillator, which
oscillates about its mean while decaying from an initial
value towards zero, a relaxator simply decays exponentially
towards zero.

The variance of the amplitudes of the kth eigenmode coef-
ficients (excitations) σk = 〈|x̃

(k)
t |2〉 = Σ̃′kk/(1−|λk|2) can be

interpreted as the dynamical importance of the kth eigenmode
Q:k. Analysis of the most dynamically important eigenmodes
can help elucidate the global dynamical structure of the
system.

III. DATA COLLECTION AND MODELING

Intracranial EEG was collected from a patient undergoing
presurgical evaluation at The Mayo Clinic (Rochester, MN).
The patient presented with seizures due to a porencephalic
cyst in the fronto-parietal brain. Seventy-eight channel iEEG
data was collected at a sampling rate of 500 Hz during
drowsy resting. We selected for analysis a 16-minute epoch
of data containing two seizure bursts, each lasting about 2
minutes. The data were decomposed by extended Infomax
ICA [9] into 78 maximally-independent processes. By vi-
sual inspection, 16 ICs were identified as exhibiting clear
epileptiform activity; remaining ICs were ignored for present
purposes. For additional details see [10], [11], [1].

The time courses of the ictal ICs were downsampled to
256 Hz after application of a zero-phase FIR antialiasing
filter. Each IC activation sequence was then independently
z-normalized. A 16-dimensional VAR[7] model was fit to
the normalized IC activations using ARFIT stepwise least-
squares [4]. An adaptive model was realized using a 15-sec
sliding window with 1-s step size. The model order (p=7)
was selected based on inspection of the distribution, over all
windows, of model orders that minimized the Hannan-Quinn
information criterion [5].

IV. RESULTS

Figure 1 shows the time course of activations of the
selected ICs during onset (top left) and offset (top right)
of the first seizure. The seizure terminates abruptly at 349.5
seconds. The lower panel shows 6 seconds of mid-seizure
activity from a representative IC. Note the prominent damped
alpha and beta oscillations.

Fig. 1. Time course of activations of selected ICs during first seizure onset
(top) and offset (middle). Time units are in seconds. Bottom panel shows 6
seconds of mid-seizure activity from IC11.
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A. Stability analysis

A VAR[p] model is stable (and by implication stationary)
if the roots of its reverse characteristic polynomial lie outside
the unit circle. This is equivalent to all eigenvalues of Ã
having modulus less than 1 [3]. Figure 2 plots the stability
index ς = maxk ln |λk| of the fitted model for each window.
Note that the process is stable for all time, but starts to lose
stability in the first part of the seizure, becomes highly stable
in the mid-end of the seizure, and plateaus at near-instability
during the inter-ictal and post-ictal periods.

Fig. 2. Results of stability analysis. Vertical lines indicate seizure periods.

B. Eigenmode analysis

For each time window, the VAR[7] model was subjected
to an eigendecomposition producing 112 eigenmodes sorted
in descending order by variance. Figure 3 shows the time-
varying characteristic frequencies (left) and damping times
(right) of the nine (8%) most dynamically important eigen-
modes (plotted as blue dots). These quantities were also
smoothed with a LOWESS (Locally Weighted Scatterplot
Smoothing) regression [14] using a span of 20 points (black
curve). Beneath each panel is indicated whether the eigen-
mode in the corresponding time window is characterized as
a relaxator (blue) or oscillator (peach).

Examining first the characteristic frequencies (Fig. 3-left),
we see that, in the pre-ictal period, the majority of the
leading eigenmodes are either characterized predominantly
as relaxators or low-frequency oscillators (0.5-3 Hz). This is
reasonable since the spectrum of drowsy resting EEG follows
a power law (1/ f N) with N ≥ 2 and infraslow fluctuations
dominate. However, another characteristic of resting EEG is
alpha rhythms (7-13 Hz). Interestingly, one of the dominant
eigenmodes (row 8) appears to be an 8-12 Hz oscillator. At
ictal onset we see most of the leading eigenmodes dramati-
cally shift to beta-band (12-25 Hz) oscillators. In a previous
report we examined the time-varying power spectrum and
frequency-domain Granger causality of this VAR model and
found that, in the early part of the seizure, the power and
causal interactions were predominantly concetrated in the
beta band [1]. Several leading eigenmodes show a brief mid-
seizure (t ≈ 270 sec, seizure 1) collapse in characteristic
frequency to an alpha or delta-theta mode followed by
a return to a slightly slower beta oscillation. This period
corresponds to a sharp reversal in the direction of information

flow within a frontal ictogenic network [1]. Towards the end
of the seizure (t ≈ 300 sec), for several eigenmodes, we
see a second sharp decrease in characteristic frequency, a
return to a slower 8-15 Hz oscillatory mode, followed by a
smooth decline back to a low-frequency oscillator/relaxator
mode at ictal offset. This third ictal stage corresponds to the
time period when the information flow dynamics switch from
more local interaction to more global interaction. The inter-
ictal period following the first seizure is again dominated by
infraslow (< 1 Hz) oscillatory or relaxatory dynamics, which
is consistent with the surpressed neuronal state commonly
observed following periods of intense ictal activity. The
second seizure is similar to the first, exibiting a consistent
slowing from beta to delta as the seizure progresses.

The damping time of dominant eigenmodes is significantly
decreased during the seizure followed by a dramatic post-
seizure increase in damping time. The short damping time
during seizure may reflect compensatory inhibitory mecha-
nisms as the system strives to maintain stability. As seen for
IC11 in Figure 1, ictal beta and alpha oscillations appear
to be highly damped, exhibiting significant amplitude mod-
ulation with bursts lasting 1-2 seconds. In contrast, during
the inter- and post-ictal periods, the data is dominated by
infra-slow oscillations which may take a long time to decay
to a small fraction of their original amplitude. It is worth
noting that another brief report which applied univariate
eigendecomposition independently to two channels of scalp
EEG data, reported similarly reduced damping time during
seizure [12].

The alpha eigenmode (row 8) stands out amongst the other
modes. Although it exhibits a slight shift to the beta band
during the seizure, it returns to an alpha rhythm during the
inter-ictal and post-ictal periods. Furthermore, the damping
time appears only weakly perturbed by the seizure. This
is significant as this eigenmode may reflect the natural
background alpha rhythm seen in healthy cortical tissue and
thus could be separated from eigenmodes which are more
clearly seizure-related. In general, identifying and analyzing
only dominant eigenmodes which exhibit dramatic shifts in
characteristic frequency or damping time may prove useful
in separating pathological from non-pathological activity, im-
proving detection of seizure onset and identification of ictal
resonance frequencies for stimulation-based interventions.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to maximally-independent (ICA) sources of
intracranial EEG data recorded from subdural electrodes
implanted in a human patient for presurgery monitoring.
Analysis of the time-varying characteristics of the most
dynamically important eigenmodes of the system revealed
a prominent shift in the principal oscillation patterns from
relaxatory and/or low-frequency oscillatory dynamics with a
moderate damping time to beta oscillatory dynamics with
low damping time at seizure onset followed by multiple
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Fig. 3. Characteristic frequencies and damping times for the 8% most dynamically important eigenmodes, in descending order of importance. Red (black)
vertical lines denote onset (offset) of seizure. Solid black curves represent lowess smoothing of individual characteristic frequencies and damping times
(blue dots). Beneath each panel is indicated, for each time window, whether the respective eigenmode is a relaxator (blue) or oscillator (peach).

stages of progressive slowing of principal oscillation frequen-
cies throughout the seizure. While this analysis is novel in
the context of intracranial seizure data analysis, this paper
represents a preliminary investigation into the topic and these
results must be verified in additional patients. The temporal
resolution and suitability of the VAR model may be improved
through the use of dual extended or cubature Kalman filtering
or sparse VAR modeling. It will also be fruitful to examine
the contributions of eigenmodes to each IC source to allow
spatial identification of sources exhibiting pathological shifts
in frequency and damping time characteristics. Finally, we
plan to combine the results of this paper and previously
published work to examine the relationships between the
observed resonant frequency modes and local and long-range
feedforward and feedback influences in seizure propagation.

Acknowledgments: Thanks to Zeynep Akalin Acar for
data preprocessing and ICA decomposition. This paper used
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well as the first author’s SIFT software package [13].
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