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Abstract— In this paper an efficient filtering procedure based
on Extended Kalman Filter (EKF) has been proposed. The
method is based on a modified nonlinear dynamic model,
previously introduced for the generation of synthetic ECG
signals. The proposed method considers the angular velocity of
ECG signal, as one of the states of an EKF. We have considered
two cases for observation equations, in one case we have
assumed a corresponding observation to angular velocity state
and in the other case, we have not assumed any observations
for it. Quantitative evaluation of the proposed algorithm on
the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows
that an average SNR improvement of 8 dB is achieved for an
input signal of -4 dB.

Index Terms— Extended Kalman Filter (EKF), Angular
velocity, Electrocardiogram (ECG), ECG Dynamical Model,
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I. INTRODUCTION

The Electrocardiogram (ECG) is a non-invasive, safe and

quick method for diagnosing cardiovascular diseases. ECG

signals are usually corrupted with unwanted interferences.

The extraction of pure cardiological indices from noisy mea-

surements, has been one of the major concerns of biomedical

signal processing. Despite the rich literature in this field,

there are still many unsolved problems, which need to benefit

from signal processing developments.

Recently, Bayesian filters were proposed for ECG de-

noising [1] and filtering cardiac contaminants [2]. The state

space model used in these approaches was inspired from the

model proposed by McSharry et al., who suggested the use

of Gaussian Mixture Model (GMM) to generate synthetic

ECGs [3]. It was later found that by some modifications,

the filtering framework developed by Clifford et al. [4] and

Sameni et al. [1], could be used as a parameter-based frame-

work for model-based ECG filtering, simultaneous denoising,

compression and beat segmentation [5], [6].

In previous works, a global angular velocity (ω) using the

average RR-interval of the whole signal was used which is

not precise, especially for long ECG signals or signals with

major RR-interval deviations. It should be noted however,

that ω can also be considered to vary on an intra-beat basis

due to heart rate and RR-interval variations. In this work,

we would like to investigate if using the angular velocity
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variable is able to improve ECG estimation, especially in

noisy cases.

Sameni et al. [1] have proposed an Extended Kalman Filter

(EKF) algorithm for denoising ECG signals (called EKF2).

They have considered two state variables and two corre-

sponding observations. After that Sayadi et. al [5] extended

EKF2 framework and added parameters of ECG dynamical

model as states to EKF2 and introduced “EKF17” algorithm

which was used for ECG denoising and compression. They

also described a Gaussian wave-based state space model

[6] in which each characteristic waves, i.e. P, QRS and T,

have been considered as states. Most recently, Lin et. al [7]

considered 18 state variables (state variables of EKF17 and

angular velocity as a new state variable) and two observations

(noisy ECG signal and its roughly estimated phase) in their

model and they used marginalized particle filter for tracking

ECG using this modified nonlinear state-space model. In this

paper we consider angular velocity of ECG as third state

variable and its roughly approximation as third observation

in an Extended Kalman Filter framework.

Basics of EKF is discussed in Section II. In Section III,

we explain our proposed method for denoising ECG signals.

“EKF2”,“EKF3” and “EKF3-2” algorithms are described

in this section. In section IV, we present the results of

applying the proposed method to a real ECG dataset. Finally,

discussion and conclusions are provided in Section V.

II. BASICS OF EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) is a nonlinear ex-

tension of conventional Kalman Filter (KF) that has been

specifically developed for systems having nonlinear dynamic

models [8]. For a discrete nonlinear system with the state

vector xk and observation vector y
k
, the dynamic model may

be formulated as follows:

{

xk = f (xk−1,wk,k)
y

k
= g(xk,vk,k)

(1)

where wk and vk are the process and measurement noises re-

spectively with covariance matrices Qk = E{(wk − w̄k)(wk −

w̄k)
T
} and Rk = E{(vk − v̄k)(vk − v̄k)

T
} which w̄k = E{wk}

and v̄k = E{vk} . The initial state estimate of the state x0 is

defined with x̄0 = E{x0} and P0 = E{(x0− x̄0)(x0− x̄0)
T
}. In

order to use a Kalman Filter for this system, it is necessary

to derive a linear approximation of (1) near desired reference

points (x̂k−1, w̄k) and (x̂−k , v̄k). This approximation will lead
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to the following linear estimate:
{

xk ≈ f (x̂k−1, w̄k,k)+Ak(xk−1 − x̂k−1)+Fk(wk − w̄k)
y

k
≈ g(x̂−k , v̄k,k)+Ck(xk − x̂−k )+Gk(vk − v̄k)

(2)

where

Ak =
∂ f (x,w̄k,k)

∂x
|x=x̂k−1

,Fk =
∂ f (x̂k−1,w,k)

∂w
|w=w̄k

Ck =
∂g(x,v̄k,k)

∂x
|x=x̂−

k
,Gk =

∂g(x̂−
k
,v,k)

∂v
|v=v̄k

(3)

In order to implement the EKF, the time propagation is

done using the original nonlinear equation, while the Kalman

Filter gain and the covariance matrix are calculated from the

linearized equations, summarized as follows:

x̂−k = f (x̂k−1, w̄k,k)
P−

k = AkPk−1AT
k +FkQkFT

k

(4)

and the measurement propagation equations are:

x̂k = x̂−k +Kk[yk
−g(x̂−k , v̄k,k)]

Kk = P−

k CT
k [CkP−

k CT
k +Gk]

−1

Pk = P−

k −KkCkP−

k

(5)

where x̂−k = Ê{xk|yk−1
,y

k−2
, . . . ,y

0
} is an estimate of the

state vector, in the kth stage, using the observations y
0

to

y
k−1

, and x̂k = Ê{xk|yk
,y

k−1
, . . . ,y

0
} is an estimate of this

state vector after adding the kth observations y
k
. P−

k and Pk

are defined in the same manner to be the estimates of the

covariance matrices, in the kth stage, before and after using

the kth observation, respectively.

III. MODIFICATION OF THE EKF STRUCTURE

A. EKF2 Algorithm

McSharry et al. [3] have proposed a synthetic ECG

generator, which is based on a nonlinear dynamic model.

This model has several parameters, which makes it adaptable

to many normal and abnormal ECG signals. Details of this

model can be found in [3]. Sameni et al. [1] proposed a

polar form of this dynamic model which has some benefits

compared to the original equations. They also proposed an

EKF algorithm (which we name “EKF2”) which has two

states (ECG signal and its phase) and two observations

(noisy ECG signal and observed noisy phase). Discrete state-

equations of this model is as follows:
{

ϕk = (ϕk−1 +ωδ ) mod(2π)

zk =−∑i δ αiωk

b2
i

∆θi exp(−
∆θ 2

i

2b2
i

)+ zk−1 +η
(6)

where ∆θi = (ϕk−θi)mod(2π), η is a random additive noise

that models the inaccuracies of the dynamic model and the

summation over i is taken over the number of Gaussian

functions used for modeling the shape of the desired ECG

channel. Following the notation of (1), the system state and

process noise vectors are defined as follows:

xk = [ϕk,zk]
T

wk = [αP, . . . ,αT ,bP, . . . ,bT ,θP, . . . ,θT ,ω,η ]T
(7)

and the process noise covariance matrix is given by Qk =
E{(wk − w̄k)(wk − w̄k)

T
}. In this model, the noisy ECG

recordings are assumed to be the observations for the KF.

In addition to it, the phase may also be added as a second

observation. In this definition R-peak is always assumed to

be located at θ = 0 and the ECG contents lying between

two consecutive R-peaks are assumed to have a linear phase

between 0 and 2π (or −π and π ). So by simply detecting

the R-peaks, phase observation is achieved [1]. Observations

may be related to the state vector as follows:

Φk = ϕk + v1k

sk = zk + v2k
(8)

where vk = [v1k,v2k]
T is observation noise and Rk = E{(vk −

v̄k)(vk − v̄k)
T
} is its covariance matrix. Details of “EKF2”

algorithm can be found in [1].

B. EKF3 Algorithm

In order to use the angular velocity information of ECG

beats, following the proposal [7] to use the angular velocity

as a state, we use angular velocity of ECG as a third state in

our system and and then we introduce a third observation

corresponding to this new state. So we propose “EKF3”

algorithm which has three states and three observations.

Regarding the small changes of the PQRST morphology

during several cycles, we use a simple autoregressive (AR)

model for angular velocity. State-equations of this model are

as follows:










ϕk = (ϕk−1 +ωk−1δ ) mod(2π)

zk =−∑i δ
αiωk−1

b2
i

∆θi exp(−
∆θ 2

i

2b2
i

)+ zk−1 +η

ωk = βωk−1 +uk

(9)

where uk denotes noise of angular velocity. In this work,

for simplicity we consider β = 1 but in general other values

which are very close to one can be examined. Following the

notation of (1), the system state and process noise vectors

are defined as follows:

xk = [ϕk,zk,ωk]
T

wk = [αP, . . . ,αT ,bP, . . . ,bT ,θP, . . . ,θT ,η ,u]T
(10)

In order to set up an EKF model based on the nonlinear

synthetic model of (9), it is necessary to have a linearized

version of the model. Consequently, the state-equation of (9)

requires linearization using (2) and (3). By defining






ϕk = F1(ϕk−1,ωk−1,k)
zk = F2(ϕk−1,zk−1,ωk−1,αi,bi,θi,η ,k)
ωk = F3(ωk−1,u,k)

(11)

The following equations represent the linearized model with

respect to the state variables ϕk,zk and ωk :

∂F1
ϕk−1

= 1,
∂F1

∂ zk−1
= 0,

∂F1
∂ωk−1

= δ

∂F2
∂ϕk−1

=−∑i∈{P,Q,R,S,T} δ
αiωk−1

b2
i

[1−
∆θ 2

i

b2
i

]exp(−
∆θ 2

i

2b2
i

)

∂F2
∂ zk−1

= 1,
∂F2

∂ωk−1
=−∑i∈{P,Q,R,S,T} δ αi∆θi

b2
i

exp(−
∆θ 2

i

2b2
i

)

∂F3
∂ϕk−1

= 0,
∂F3

∂ zk−1
= 0,

∂F3
∂ωk−1

= 1

(12)
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Similarly, the linearization of (11) with respect to the process

noise components yields:

∂F1
∂αi

= ∂F1
∂bi

= ∂F1
∂θi

= ∂F1
∂η = ∂F1

∂u
= 0

∂F2
∂αi

=−δ
ωk−1∆θi

b2
i

exp(
−∆θ 2

i

2b2
i

)

∂F2
∂bi

= 2δ
αiωk−1∆θi

b3
i

(1−
∆θ 2

i

2b2
i

)exp(
−∆θ 2

i

2b2
i

)

∂F2
∂θi

= δ
αiωk−1

b2
i

(1−
∆θ 2

i

b2
i

)exp(
−∆θ 2

i

2b2
i

), ∂F2
∂η = 1,

∂F2
∂u

= 0

∂F3

∂αi
= ∂F3

∂bi
= ∂F3

∂θi
= ∂F3

∂η = 0,
∂F3

∂u
= 1

(13)

In this model, we define three observations corresponding to

the states. In order to estimate the angular frequency ω(t), a

simple estimate would be ω(t) = 2π
T (t) ; where T (t) is the R-R

peak period in each ECG cycle. We only consider ω is related

to the Heart Rate Variability (HRV) of the ECG signal and

is known to be influenced by other physiological systems

of the body. Some authors have worked on the spectral

specifications of the HRV [9]; this suggests that ω itself may

be assigned a dynamic model. Angular velocity observation

is achieved by differentiating phase in each R-R peak period.

As phase varies linearly between −π and π in each R-R peak

period, ω is almost constant in this period but it may be

contaminated by noise. Hence observations may be related

to the state vector as follows which vk = [v1k,v2k,v3k]
T is

observation noise:

y
k
= [Φk,sk,Ωk]

T

Φk = ϕk + v1k

sk = zk + v2k

Ωk = ωk + v3k

(14)

C. EKF3-2 Algorithm

In subsection III-B, we used ωk as a third state following

the proposed idea in [7] but we defined three observations

corresponding to three states. In this section, we propose

“EKF3-2” algorithm which have three states same as “EKF3”

algorithm but here we consider only two noisy observations,

corresponding to the state variables ϕk and zk. In fact in this

model, we did not have any corresponding observation for ωk

and we consider it as a hidden state and want to evaluate the

results and compare them with results of “EKF3” algorithm.

Here, state vector xk and observation y
k

are as follows:

xk = [ϕk,zk,ωk]
T
, y

k
= [Φk,sk]

T (15)

IV. RESULTS

The MIT-BIH Normal Sinus Rhythm Database [10] was

used to study the performance of the proposed method.

From this database, 30 seconds ECG signals of 10 different

subjects without considerable artifacts which recorded at

a sampling rate of 128 Hz were used. “EKF2”, “EKF3”

and “EKF3-2” algorithms were implemented in MATLAB.

The performance of these algorithms were influenced by the

initial value of the state vectors, as well as the covariance

matrices of the process and measurement noise. Hence,

we employ the initialization procedure described in [1].

MATLAB codes used for implementing “EKF2” algorithm

were part of OSET [11] (Open-Source Electrophysiological

Toolbox) which was proposed by Sameni et. al [1]. For

evaluating the performance of the proposed algorithms, we

compared the improvement in SNR by the means of expres-

sion:

imp[dB] = SNRout −SNRin = 10log(
∑i |xn(i)− x(i)|2

∑i |xd(i)− x(i)|2
) (16)

where x denotes the clean ECG, xd is the denoised signal

and xn represents the noisy ECG.

In order to investigate the performance of our algorithm

and to compare it with different methods, we have imple-

mented the previously introduced EKF model with 2 state

variables (EKF2).

To ensure the consistency of the results, the whole pro-

cedure was repeated over the 30 seconds of the 10 ECG

signals (records No. 16265, 16272, 16273, 16420, 16483,

16539, 16773, 16789, 17052 and 17453), each time using a

different set of random white additive noise at the input. The

filter output SNR calculation was averaged over the whole

results for each input SNR. So results are independent of

ECG record.

For a quantitative comparison, the mean of the SNR

improvements versus different input SNRs are plotted in

figure 1 and also presented in table I. In this figure, we can

see that in all algorithms, SNR improvement is higher for

low input SNRs. These results are achieved after averaging

the results of all records with different noises.

SNR improvements versus different input SNRs of 4

signals are presented in figures 2, 3, 4 and 5. Results obtained

with EKF3 and EKF3-2 are better than EKF2 especially

in lower input SNRs. It proves the interest of considering

angular velocity in the model.
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Fig. 1. Mean of SNR Improvement vs. Input SNR for all records.

TABLE I

MEAN OF SNR IMPROVEMENT IN DECIBELS FOR DIFFERENET ECG

RECORDS OF MIT-BIH DATABASE

Aalgorithm SNRi=-8 SNRi=-4 SNRi=0 SNRi=4 SNRi=8

EKF2 5.829 7.89 7.127 6.635 5.915

EKF3 6.505 8 7.22 6.657 5.914

EKF3-2 6.704 7.98 7.22 6.61 5.886
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Fig. 2. SNR Improvement vs. Input SNR (Record No.16265).
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Fig. 3. SNR Improvement vs. Input SNR (Record No.16273).

V. DISCUSSION AND CONCLUSIONS

Following the proposal [7] to use the angular velocity as

a state, we have used angular velocity of ECG as a third

state in our system. New proposed model is constructed

based on having or not having the “ω” observation. We have

introduced the latent (hidden) structure in EKF3-2 and the

observable construction of this model as EKF3. Analysis of

computational complexity of EKF3 and EKF3-2, which are

extentions to the previous EKF2 shows that these algorithms

are at the same level of cost. Quantitative evaluation of

the algorithm shows the effect of new modifications on the

estimate of the clean ECG.

Moreover, comparing to benchmark denoising schemes

such as EKF2 algorithm, EKF3 and EKF3-2 bring more SNR

improvement, especially in lower input SNRs. In “EKF3-2”,

although we did not have any corresponding observation for

ωk, one achieved the same results as with the “EKF3” which

is a nice property of the simplified model “EKF3-2”.

Further work can include the use of this proposed method

for more real ECG datasets especially abnormal signals. It

is also of interest to find other applications except denoising

which needs angular velocity of ECG.
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Fig. 4. SNR Improvement vs. Input SNR (Record No.16420).
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Fig. 5. SNR Improvement vs. Input SNR (Record No.17052).
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