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Abstract—In this study, an individualized predictive model of 

the subcutaneous glucose concentration in type 1 diabetes is 

presented, which relies on the Random Forests regression 

technique. A multivariate dataset is utilized concerning the s.c. 

glucose profile, the plasma insulin concentration, the intestinal 

absorption of meal-derived glucose and the daily energy 

expenditure. In an attempt to capture daily rhythms in glucose 

metabolism, we also introduce a time feature in the predictive 

analysis. The dataset comes from the continuous multi-day 

recordings of 27 type 1 patients in free-living conditions. 

Evaluating the performance of the proposed method by 10-fold 

cross validation, an average RMSE of 6.60, 8.15, 9.25 and 10.83 

mg/dl for 15, 30, 60 and 120 min prediction horizons, 

respectively, was attained.  

I. INTRODUCTION 

Achieving tight glycemic control in type 1 diabetes 
necessitates the proper administration of insulin-based 
regimen considering the effect of both exogenous and 
endogenous factors on glucose regulation. The daily 
management of type 1 diabetes has taken advantage of the 
recent advances in continuous glucose monitoring (CGM) 
technologies; however, the wide spectrum of parameters that 
should be controlled renders it a rather difficult procedure. 
To this end, the enhancement of CGM devices with 
predictive models of the subcutaneous (s.c.) glucose profile 
could help in evaluating an individual’s response to therapy, 
thereby mitigating primarily the incidence of short-term 
diabetic complications such as hypoglycemia. 

The problem of s.c. glucose concentration prediction in 
type 1 diabetes has been studied in the context of both time-
series and machine-learning techniques. The inherent 
nonlinearity and nonstationarity of the glucose regulatory 
system limits the predictive capacity (up to 30 min) of the 
autoregressive models [1, 2] of the CGM time series. This 
can also be partially attributed to the fact that the auto-
correlation function of the s.c. glucose measurements 
vanishes at about 30 min [3] and, therefore, even a nonlinear 
technique as the one in [4] cannot show a better behavior. On 
the other hand, when quantitative information concerning the 
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carbohydrates intake and the exogenous insulin 
administration is exploited along with the s.c. glucose signal, 
predictions for longer horizons are made feasible [5-7]. The 
input of a Gaussian Process [5] and a Support Vector 
Regression [6] model was enhanced with physical activity 
information using real data recorded continuously throughout 
the observation days. In [7], qualitative descriptors of the 
lifestyle and the emotional status of the patient were taken 
into account for the construction of feed-forward neural 
networks able to provide 75-min predictions.  

In this study, the Random Forests (RF) regression technique 
[8] is employed for the first time in the literature to deal with 
the problem of s.c. glucose prediction in type 1 diabetes 
based on a multivariate dataset acquired under free-living 
conditions. RF is an ensemble of tree predictors that partition 
the feature space using linear decision boundaries and the 
final decision is formed by averaging the output of the 
ensemble. We experiment with 3 different input cases 
corresponding to combinations of the input variables and we 
evaluate and compare the predictive accuracy of the RF 
technique for each one in relation to the prediction horizon. 

II. MATERIALS AND METHODS 

A. Dataset 

The dataset includes 27 type 1 diabetic patients following 
multiple-dose insulin therapy and was collected in the 
framework of the EU research project METABO [9] from 
the participating clinical partners. The baseline 
characteristics of the patients as well as some descriptive 
statistics of their s.c. glucose profile are given in Table I.  

Each patient wore the Guardian Real-Time CGM system 
(Medtronic Minimed Inc.), which records an average s.c. 
glucose concentration value with a 5-minute period. The 
SenseWear Armband body monitoring system (BodyMedia 
Inc.) was also used for the continuous (every 1 min) 
recording of the energy expenditure during physical 
activities. In addition, information regarding the food intake 
(i.e. type, amount and time) and the insulin injections (i.e. 
type, dose and time) was recorded on a daily basis using a 
specially designed paper diary. A dietician analyzed the meal 
recordings to specify their carbohydrate content. 

The 27 patients were placed in 3 groups as follows: 
group A includes 15 patients for whom we have all the 
information required, group B includes 5 patients for whom 
it was not possible to exploit activity data and, group C 
includes the remaining 7 patients for whom only the CGM 
signal was available. 
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B. The Proposed Method 

The s.c. glucose concentration at time t+l, assuming that 
t is the time at which the prediction is made and l is the 
prediction horizon, is predicted by the RF regression 

function [8] of the input dx : 
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where B is the size of the forest (i.e. number of trees) and 

 ; bT x   denotes the output of the b
th

 tree characterized by 

the vectors b . More specifically, each tree is constructed 

based on an independent set of random vectors, b , 

generated by a fixed probability distribution. Firstly, the 
randomness is injected into the building process of each tree 
by drawing a bootstrap sample from the training dataset, 
which has the same size as the original dataset. Splitting a 
node in the tree involves: (i) the selection of m features 
randomly from the total set of d features and then (ii) the 
determination of the best split among them according to the 
Gini index. The tree is then grown to its entirety without any 
pruning. Indeed, this process is repeated until each terminal 
node is associated with at least nodesize records. 

The input x  in the prediction function f concerns the 

following variables: (1) the s.c. glucose profile (gl), (2) the 
plasma insulin concentration (Ip), (3) the rate of appearance 
of exogenous (meal-derived) glucose in plasma (Ra), (4) the 
cumulative amount of exogenous glucose that appeared in 
plasma (SRa), (5) the hour of day (1 - 24) (h) and, (6) the 
cumulative energy expenditure (SEE). The time course of Ip 
is calculated according to a compartmental approach [10], 
which describes both the s.c. absorption kinetics for various 
insulin analogues ranging from rapid- to long-acting ones 
and the associated plasma dynamics. Regarding Ra, it is 
obtained by using the compartmental model of Lehmann et 
al. [11], in which the rate of gastric emptying is a function of 
the meal carbohydrate content. 

In order to model the time delays in the glucose 
regulation process, we take into account the history of the 
above input variables. In particular, for each variable v the 

successive values within the time window  ,v v v vt n t t   are 

used for predicting the s.c. glucose concentration at time t+l: 

        ,..., , ,v v v v v vv v t n t v t t v t          (2) 

where vt  is the upper limit of the time window, vt  is the 

sampling period and the parameter vn determines the length 

of the time window. Thus, the total size d of the input 
(number of features) is: 

         1 .v

v
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The value of 
vt  is taken equal to t for the variables gl and 

SEE, whereas it is taken equal to t+l for the variables Ip, Ra 
and SRa. Furthermore, the temporal effect of a variable v on 

s.c. glucose, as expressed by the v vn t  quantity, is 

determined based on our experimental results as well as on 
theoretical and clinical results found in [2-4, 12, 13]. 

First, based on previous studies showing the existence of 
a strong dependency between glucose samples which are 30 
or fewer minutes apart [2-4], we utilize the measurements of 

the gl variable in the last 30 min (i.e. 6,gln   5minglt  ) 

with respect to the time t. Furthermore, we exploit the values 
of the Ip and the Ra variables within the last 30 min (i.e. 

, 6,
pRa In  , 5min

pRa It  ) with respect to the time t+l 

aiming at capturing both their magnitude and trend. To 
clarify that the upcoming values of these variables within the 

time interval  ,t t l  are computed by the compartmental 

models based on the insulin and meal recordings until the 
current time t. In addition, we have exploited the area under 
the Ra curve over the last 90 min (i.e. 

9,SRan   10minSRat  ) with respect to the time of 

prediction t+l, in accordance with studies on type 1 diabetes 
concerning the absorption of meal-derived glucose into the 
systemic circulation [12]. In particular, we introduce the 
variable SRα, which represents the cumulative amount of 
exogenous glucose inserted in the plasma over time 
(calculated every 10 min). Similarly, the short-term effects of 
physical activities and exercise on glucose variability [13] 
were treated by introducing the variable SEE, which 
expresses the energy expenditure over the last 3 hrs (i.e. 

18,SEEn   10minSEEt  ) in the form of a vector calculated 

cumulatively every 10 min. Furthermore, an attempt was 
made to capture the circadian rhythms of glucose 
concentration [14] by simply using as input the hour of day 

at which the prediction is made (i.e. 0h hn t   ). 

In order to elucidate the predictive capability of the input 
variables, we investigate 3 different input cases. In the first 
case, denoted herein as Case 1, the prediction of s.c. glucose 
is made based only upon the past s.c. glucose profile (gl). In 
the second case, denoted as Case 2, the Ip, Ra, SRα and h 
input variables are also added in the input of the predictive 
function. The last case, namely Case 3, results from the 
addition of the SEE variable to the input of Case 2. 
Obviously Case 1 can be applied to all patient groups, Case 
2 can be applied to groups A and B, and Case 3 only to 
group A. Finally, predictions are performed for four values 

of the prediction horizon l, i.e. 15,  30,  60 and 120 min.l   

TABLE I. DATASET CHARACTERISTICS 

Patient Baseline 

Characteristics 

Descriptive Statistics of the 

Glucose Dataset 

Gender Average 

Hypoglycemic 

Events Per Day 

0.4 

(0-2) 
No. Female 12 

No. Male 15 

Age (years) Average Duration 

of Hypoglycemic 

Events (min) 

43.1 

(0-88.33) 
Mean ± SD 43.5±13.4 

Range 19-72 

BMI (kg/m2) Average 

Hyperglycemic 

Events Per Day 

1.64 

(0-3.36) 
Mean ± SD 25±3.70 

Range 18.75–35.8 

Observation Period (days) Average Duration 

of Hyperglycemic 

Events (min) 

129.3 

(0-283.75) 
Mean ± SD 13.42±3.69 

Range 5-22 
SD=Standard Deviation, The values in parenthesis indicate min and max average values per patient. 
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C. Model Training and Evaluation 

The predictive performance of the proposed method is 
evaluated individually for each patient by employing a 10-
fold cross validation procedure. The number of trees in the 
forest, B, that minimizes the 10-fold cross validation RMSE 
(RMSE10-fold) is found by testing exhaustively all the values in 

the range  1,100 . The RMSE10-fold is defined as follows: 

    
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where kN  represents the size of the k
th

 fold, yj is the actual 

value of glucose associated with the input x
j
 and  jf x  is 

the glucose value computed by the RF. The generalization 
error of the RF is also affected by the values of the 
parameters m and nodesize which are used during the tree 
induction process. However, their determination is usually 
made a priori and, the values commonly used in the 

literature for regression are / 3d  (where d is the number of 

input features) and 5, respectively [8]. 

Besides the RMSE10-fold, the assessment of the predictive 
accuracy of the proposed method is also based on the 
average correlation coefficient (r10-fold) resulting from the 10-
fold cross validation: 
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where 
kr  is the correlation coefficient regarding the k

th
 fold. 

In addition, the obtained predictions are evaluated with 
the aid of the Clarke’s Error Grid Analysis (EGA) [15], 
which addresses the errors from a clinical point of view. This 
analysis defines 5 zones (i.e. A-E) so that the predicted-
observed s.c. glucose concentration points within zones A 
and B are considered to be clinically acceptable, whereas the 
ones associated with zones C-E are likely to result in an 
unnecessary or erroneous treatment. 

III. RESULTS 

Table II reports the average value and the corresponding 
standard deviation of RMSE10-fold and r10-fold for all input 
cases and for different patient groups. Regarding Group A, 
we observe that Case 1 results in a sufficient low error and a 
high degree of correlation concerning short-term (i.e. for 15 
min and 30 min) predictions of the s.c. glucose 
concentration. However, as indicated by both measures, the 
predicted glucose profile deviates significantly from the real 
one for medium- to long-term prediction horizons (i.e. for 60 
min and 120 min). The introduction of the Ip, Ra, SRa and h 
input variables in Case 2 reduces the average RMSE10-fold 
associated with the 15-min and 30-min predictions by 29% 
and 42%, respectively, in comparison with Case 1. 
Regarding the 60-min and 120-min predictions, they are 
improved by 53% and 60%, respectively, compared to Case 
1. In Case 3, in which the SEE variable is additionally used, 
the average RMSE10-fold does not exceed 9 mg/dl for 15-min 
and 30-min predictions and 11mg/dl for 60-min and 120-min 
predictions being further improved compared to Case 2 (i.e. 

by 6%, 9%, 16% and 13%). Furthermore, the average 
correlation coefficient r10-fold is almost 1 in Cases 2, 3 for all 
different prediction horizons. The RF glucose predictive 
model exhibits similar behavior for groups B and C. 

The average percentages of the predicted-observed points 
falling into the different zones of the Clarke’s EGA, as 
applied to group A, are presented in Table III. It can be seen 
that practically all points lie in zones A and B even for 
higher prediction horizons. This analysis further supports 
that the predictions, and particularly the medium- to long-
term ones, become more safe in Cases 2 and 3 where more 
than 95% of points lie within zone A for all horizons, as is 
also shown by the average r10-fold obtained for these cases. 
Finally, similar were the results of this analysis for groups B 
and C. 

IV. DISCUSSION 

In this work, a combination of compartmental models 
and RF for regression was proposed for the prediction of the 
s.c. glucose concentration in type 1 diabetes. A multivariate 
dataset covering the most prevalent regulators of glucose 
levels was utilized for this purpose. Comparisons of the 
numerical accuracy and the clinical significance of the 
generated predictions were made for 3 different input cases. 

For the first time RF regression is being used in a glucose 
prediction scheme. Despite being a highly linear technique, 
RF is able to produce generalization errors that compare 
favorably to those of non-linear ones allowing potentially 
medical interpretation of its results. An additional innovative 
feature of this work is the manipulation of the model’s input: 
(i) by introducing input variables that were eventually proved 
to contribute to significantly better predictions and (ii) by 
quantifying the effect of these inputs to the prediction 
accuracy through the experimentation with different input 
cases. More specifically, the output of the compartmental 
models was exploited the most by using not only the time 
history of the Ra and the Ip signals up to the time at which 
the prediction is made (i.e. t) but also their future values at 

the time interval  ,t t l . In addition, the area under the Ra 

curve was first exploited herein through the SRa variable. 
Regarding physical activity, we treated it differently from [5, 

TABLE II. AVERAGE ERROR OF THE RF PREDICTIVE MODEL 

Case# 

Prediction Horizon 

15 min 30 min 60 min 120 min 

RMSE r RMSE r RMSE r RMSE r 

 Group A 

Case 1 9.84 

(2.07) 

0.98 

(0.01) 

15.37 

(2.47) 

0.95 

(0.02) 

23.43 

(3.64) 

0.88 

(0.05) 

31.04 

(6.09) 

0.75 

(0.11) 

Case 2 6.99 

(1.43) 

0.99 

(0.00) 

8.98 

(1.59) 

0.98 

(0.01) 

11.00 

(1.58) 

0.97 

(0.01) 

12.38 

(2.10) 

0.97 

(0.01) 

Case 3 6.60 

(1.32) 

0.99 

(0.00) 

8.15 

(1.65) 

0.99 

(0.01) 

9.25 

(1.39) 

0.98 

(0.01) 

10.83 

(2.76) 

0.97 

(0.01) 

 Group B 

Case 1 10.22 

(0.68) 

0.98 

(0.00) 

16.82 

(2.42) 

0.95 

(0.02) 

26.01 

(5.04) 

0.87 

(0.04) 

35.03 

(7.10) 

0.75 

(0.08) 

Case 2 7.49 

(0.62) 

0.99 

(0.00) 

10.02 

(1.51) 

0.98 

(0.01) 

12.71 

(3.00) 

0.97 

(0.01) 

13.97 

(3.65) 

0.97 

(0.01) 

 Group C 

Case 1 11.33 

(2.17) 

0.97 

(0.02) 

17.64 

(2.77) 

0.92 

(0.05) 

26.05 

(3.94) 

0.82 

(0.07) 

35.37 

(6.41) 

0.61 

(0.10) 
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6] by taking into account the time history of energy 
expenditure through the SEE variable. Finally, although 
comparative results were not provided herein, our 
experiments revealed the relationship between the hour of 
prediction and the glucose profile as in [7]. 

The results derived from our dataset demonstrate that the 
short-term predictions are feasible even based solely on the 
recent profile of glucose (Case 1). The effect of the 
prediction horizon on the obtained accuracy was visible in 
all input cases in all patient groups. However, when 
exploiting the full set of input variables (Case 3), the average 
RMSE10-fold associated with the 60-min and 120-min 
predictions for group A was greatly improved by 61% and 
65%, respectively, compared to Case 1, reaching 9.25 mg/ dl 
and 10.83 mg/dl.  The inclusion of all input variables 
amplified the linear correlation between the predicted and 
the observed glucose signals as well, which was also inferred 
by the Clarke’s EGA. The results for Case 3 also show the 
importance of information about daily activities. Having 
compared the proposed method with those reported in the 
literature, we found that only the autoregressive model 
proposed by Gani et al. [2] gives more accurate 30-min 
predictions (average RMSE=3.42 mg/dl). However, those 
results concern stationary segments of the CGM dataset. 
Moreover, a direct comparison with [7] is not feasible, since 
in that study a generic model is built for all patients. 

Part of the limitations of the proposed method comes 
from the compartmental models which are used. The fact that 
these models do not consider the effect of some important 
factors on the absorption of s.c. insulin (e.g. site of injection, 
skin temperature) and carbohydrates (e.g. fats, fibers, 
glycemic index), and the fact that they are applied using 
population parameters inevitably introduce some error in the 
prediction process. In addition, there are other technical 
issues that need to be examined such as the optimal 
observation period required for data collection and the rate 
of model updating. Besides these, further clinical validation 
of the proposed method is required. 

V. CONCLUSIONS 

A systematic study based on RF for regression and a 
multivariate dataset was presented for the prediction of the 
s.c. glucose concentration in type 1 diabetes. High-accuracy 
short- and long-term predictions were derived in the case 
where all the available information is used. A challenging 
prospective could be to exploit the level of transparency the 
RF technique provides through the interpretation of the rules 
extracted from the ensemble of trees, as well as through the 
evaluation of the variables importance based on the measures 
yielded by RF. 
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