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Abstract— The linear theory of classical elasticity cannot
effectively describe bone’s mechanical behavior since only
homogeneous media and local stresses are assumed.
Additionally, it cannot predict the dispersive nature of Rayleigh
wave which has been experimental observed. By adopting
Mindlin Form II gradient elastic theory and performing
Boundary Element (BEM) simulations we also recently
demonstrated Rayleigh dispersion. In this work we use this
theory to analytically determine the dispersion of Rayleigh
wave. We assume an isotropic semi-infinite space with
mechanical properties equal to those of bone and
microstructure and microstructural effects. Calculations are
performed for various combinations between the internal
constants [l;, I, h;, h, which corresponded to a) values from
closed form relations derived from a realistic model and b)
values close to the osteon’s size. Comparisons are made with the
corresponding computational results as well as with the
classical elastic case. The agreement between the computational
and the analytical results was perfect demonstrating the
effectiveness of Mindlin’s Form II gradient theory of elasticity
to predict the dispersive nature of Rayleigh wave. This study
could be regarded as a step towards the ultrasonic
characterization of bone.

I. INTRODUCTION

Ultrasonic wave propagation in cortical bone has been
widely investigated using the classical elastic theory [1].
However, in non-homogeneous materials with
microstructural effects like bone the stress state should be
determined non-locally, which cannot be achieved using
classical elasticity. Furthermore above 0.8 MHz (i.e.,
wavelength smaller than the cortical thickness) ultrasound
propagates in bone as a dispersive surface Rayleigh wave
rather than a dispersive guided wave, which cannot be also
supported by classical elasticity. The dispersive nature of
the guided and Rayleigh waves can be successfully described
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using Mindlin’s Form II gradient theory of elasticity, which
introduces intrinsic parameters that correlate microstructure
with macrostructure [2]. By exploiting the simplest form of
this theory (which incorporates two coefficients) we recently
showed that the dispersion of the propagating guided waves
is highly affected by bone’s microstructure [3]. This was also
in accordance with a subsequent computational study on
guided wave propagation in 2D Boundary Element bone
models with microstructural effects [4].

The dipolar gradient elastic theory has been used to
explain Rayleigh wave dispersion phenomena that have been
experimentally observed at high frequencies [5]. In two
recent computational studies [6, 7] we also investigated the
effect of bone’s microstructure on Rayleigh wave
propagation by adopting both the simple and the general
Mindlin Form II gradient elastic theory (in which four
constants are involved). Since the determination of the
microstructural constants introduced in the stress analysis is
an open issue when applying enhanced elastic theories to real
problems, the constants were first assigned with values from
closed form relations derived from a realistic model
proposed by [4]. This model associates the internal length-
scale values with the periodicity of geometrical and elastic
properties of the osteons. Numerical simulations were also
performed for different combinations between the internal
constants with values at the order of the osteon’s size [8]. By
performing BEM simulations in cortical bone we confirmed
that Rayleigh wave is dispersive only when the shear
stiffness intrinsic parameter is different from the inertia one.

In this work we analytically determine the dispersion
curve of Rayleigh wave in the context of Mindlin Form II
gradient elasticity. Analytical solution is given for an
isotropic semi-infinite space with microstructure and
mechanical properties equal to those of bone. The values of
the internal length scale parameters were in accordance with
those examined in [7]. Comparisons are made with the
corresponding computational results derived from [7] as well
as with the analytical dispersion curve of the Rayleigh wave
in the classical elastic case and were also compared to
empirically selected values. In all cases, the analysis of the
obtained signals is performed in the time-frequency (t-f)
domain.

II. MATERIALS AND METHODS

A. Mindlin’s Form II gradient elastic theory and Rayleigh
wave dispersion

In Mindlin’s Form-II gradient elastic theory the potential
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energy of an isotropic elastic body with microstructure of
volume V is considered as a quadratic form of the strains and
the gradient of strains [2]. The equation of motion in Mindlin
Form-1I for a homogeneous material with microstructural
effects is given by:

(A +2)(1=PVIVV -u—u(1-VIVxV xu
= p(ii— B’VV -ii + 12V x V xii),

(0

where the operator V is the Laplacian, u is the displacement
vector and /,/,,h,h, are intrinsic lengthscale parameters
having units of length square (°) given by:

1> =2(a,+a,+a,+a, +a)/ (A+2u), (2
I =(a, +2a, +a;)/2u, (3)
, P2 v(arp) ] @)
b= 3 .
o
h;:pd(uﬂ)_ )
3p

The parameters /,/, represent the effect of the stiffness of
the elastic properties of the microstructure on the
macrostructural behavior of the gradient elastic material
whereas /i, 5, represent the effect of the inertia.

Considering the same density for microstructure and
macrostructure, ie., p'=p and @ =a;=a5=0,
a,=(1/2)g", a, = ug’ correspond to the simple or dipolar
Mindlin’s Form II gradient elastic theory.

Consider a semi infinite space and a Cartesian system
Ox;x, with the axis Ox; being the upper boundary. In the
gradient theory the semi-infinite space is assumed free from
stresses and double stresses i.e.

P |x2:0: 0, R |x2:0: 0, (6)
where Pand R are the traction vector and the double
traction vector respectively. Solution to (1) and satisfaction
of the boundary conditions result in a system of four
unknown constants. The components of the determinant of
the system are given in the Appendix. Vanishing of the
determinant yields the characteristic dispersion equation of
the Rayleigh wave propagating in a semi-infinite gradient
elastic space.

B. Computation of Rayleigh wave

The semi-infinite space was assumed to have mechanical
properties equal to those of bone i.e., Young's modulus Eyqe
= 14 GPa, Poisson's ratio vy, = 0.37 and density p = 1500
Kg/m3 [1,10]. Four different cases of the intrinsic parameters
were investigated. Casel corresponds to values derived from
Ben-Amoz model [4], ie, I/ =I=h=104x10"m and

h, =0.74x10"m. The next three cases correspond to

different combinations between the internal constants, i.e.,
L=h=104x10"m, [, =h, =0.74x10"*m
L =1,=h,=0.74x10"m, h, =1.04x10"*m, in Case3 and

in Case2,

I, =h =h, =0.74x10*m [, =1.04x10* m, in Case4.

C. Numerical solution

Numerical solution to the problem was given using a
symbolic algebra software (Mathematica, Wolfram Research
Inc., IL, USA). The frequency step equals to 10 Krad/sec
since no differences were observed in the results for smaller
steps [3].

III. RESULTS

The Rayleigh wave calculated for all the examined cases
is presented in Fig. in the form of frequency-group (f, c,)
velocity dispersion curves (dashed lines). The corresponding
analytical group velocity dispersion curve in the classical
elastic case derived from the frequency equation for surface
waves [9] is also presented in Fig.l (dotted line) for
comparison purposes.
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Figure 1. Group velocity dispersion of the Rayleigh wave analytically
derived for Casel,2,3 and 4. The classical elastic case is also presented
(dotted line).

It can be seen that in Casel (i.e., derived from Ben Amoz
model [4]) is strongly dispersive with its velocity to be
highly modified from that in the classical elastic case. In
Case2 the Rayleigh velocity is almost identical to that in the
classical case, exhibiting thus no dispersion. In Case3 the
Rayleigh velocity is slightly lower than the classical case as
the frequency increases (i.e., at 1.45MHz it is 27m/sec
lower). Finally in Case4 the velocity of the Rayleigh takes
higher values in the classical cases as the frequency increases
exhibiting dispersion.

To compare the analytical curves with the computational
ones [7], for transmitter-receiver distance 60mm i.e., equal to
that used in [7] the curves of the Rayleigh wave derived from
both gradient and classical elasticity were converted to t-f
curves and were superimposed on the t-f plane of the
corresponding signals obtained from the BEM models [7]. T-
f signal analysis has been typically used by our group for the
detection of the guided modes propagating in intact and
healing bones [1]. The reassigned Smooth-Pseudo Wigner-
Ville (RSPWYV) energy distribution function has been also
used in [7] since it accurately localizes guided waves.
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The t-f diagrams of the Rayleigh wave for Casesl, 2, 3
and 4 are shown in Figs. 2, and Figs 3a, b and c respectively.
The computational Rayleigh signal is depicted with the black
line, whereas the corresponding analytical curves in the
gradient and the classical elastic case are depicted with the
blue dashed line and the magenta dotted line respectively.
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Figure 2. T-f representation of Rayleigh wave dispersion for Casel
(L=L,=h=104x10"m, h,=0.74x10"m ).

In Casel, the computational Rayleigh dispersion can be
perfectly characterized by the corresponding analytical curve
calculated for the gradient elastic case (Fig.2). In Cases2 and
3 the analytically derived arrival times of the Rayleigh wave
in the gradient and classical elasticity are almost identical.
Therefore slight differences (from the classical case) in the
group velocity, mainly in Case3 (Fig.1), become rather
practically insignificant in the t-f plane since the difference
in the arrival time is very small. The computational Rayleigh
wave is also well characterized by the analytical curves in
both Cases2 and 3 in the 0-1.43MHz frequency range. In
higher frequencies the computational t-f curve is slightly
deviated from the theoretical ones. For instance at
1.467MHz the difference between the computational and
analytical arrival time is 1.51psec in both Cases. Finally in
Case4 the Rayleigh dispersion obtained from a BEM model
can be perfectly described from the corresponding analytical
gradient elastic t-f curve.

IV. DISCUSSION

In this study we analytically calculated for the first time
the dispersion curve of the Rayleigh wave propagating in
semi-infinite media with microstructure and properties equal
to those of bone. Microstructural effects were accounted by
using Mindlin’s Form II gradient elastic theory. Although
several enhanced theories have been proposed for the
investigation of microstructural effects in bones [3],
Mindlin’s gradient elastic theory has become attractive
because of its simplicity and the symmetry of all stress
tensors involved.

Since no conclusion has been drawn regarding the values
of the microstructural constants, we first determined them
using closed form relations derived from a realistic model
[4] with the representing volume element based on the
osteon’s characteristics. Three additional combinations
between the microstructural parameters were also examined.

In all cases the values were similar to those presented in our
previous computational study [7] so as to perform direct
comparisons between the analytical and computational
results.

15 15

Frequency (MHz)
Frequency (MHz)

0s 1 0s

. . . @ . i i .
o 20 40 60 80 o 20 40 a0 80
Time (usec) Time (psec)

15

Frequency (MHz)

. . ©
] 20 40 60 S0
Time(jisec)

Figure 3. T-f representation of Rayleigh wave dispersion for (a) Case2, (b)
Case3 and (c) Cased.

In Casel I, =l,=h #h,) and Cased (ie,
l,=h =h, #1,) the Rayleigh velocity was significantly

(ie.,

modified from that in the classical elastic case as the
frequency increases, exhibiting dispersion. In Case2 (i.e.,
l,=h,1l, =h,) was almost identical to that in the classical
case. In Case3 (i.e., [, =l,=h, #h ) the velocity of the
Rayleigh wave was anticipated non-dispersive but some
slight dispersion is observed. However in the t-f plane (Fig.

4) this could not be observed which suggests that Rayleigh
wave arrives simultaneously without exhibiting dispersion.

Our findings demonstrate that dispersion of Rayleigh
waves occurs when [, # i, i.e., when microstructural effects

are represented by different stiffness and inertia length scale
parameters no matter which are the values of 7,/ . This is in

agreement with our previous findings in [7]. Nevertheless, in
that study the computational results were validated by
observing the asymptotic behavior the first order modes
derived from the dipolar gradient elastic theory. To this end,
the analytical Rayleigh curves for all cases were
superimposed in the corresponding t-f diagrams of the
signals from [7]. When [, # h,, the numerical simulations
were in perfect agreement with the analytical solutions from
gradient elasticity. When [, = h, ,a very small deviation was
observed only at frequencies higher than 1.43MHz.

However, these deviations could be possibly attributed to
computational problems.
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V. CONCLUSION

We presented an analytical study on the effect of
mictrostructure on Rayleigh wave propagation by using the
Mindlin Form II gradient elastic theory. Calculations were
performed for various combinations between the
microstructural constants and the results were compared with
the corresponding computational signals obtained from [7].
Overall our findings demonstrate the dispersive nature of the
Rayleigh wave under certain conditions, i.e., only when the
shear stiffness constant is different from the inertia internal
one. (i.e. [, # h,). In addition the analytical results were in

good agreement accordance with the computational ones.
Overall Mindlin’s Form II gradient elastic theory is more
efficient in predicting the dispersive nature of Rayleigh wave
and thus it could be proved useful in providing more precise
interpretations of clinical measurements in real bones.

APPENDIX
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