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Abstract² The linear theory of classical elasticity cannot 

effectively GHVFULEH� ERQH¶V� PHFKDQLFDO� EHKDYLRU� VLQFH� only 

homogeneous media and local stresses are assumed. 

Additionally, it cannot predict the dispersive nature of Rayleigh 

wave which has been experimental observed. By adopting 

Mindlin Form II gradient elastic theory and performing 

Boundary Element (BEM) simulations we also recently 

demonstrated Rayleigh dispersion. In this work we use this 

theory to analytically determine the dispersion of Rayleigh 

wave. We assume an isotropic semi-infinite space with 

mechanical properties equal to those of bone and 

microstructure and microstructural effects. Calculations are 

performed for various combinations between the internal 

constants l1, l2, h1, h2 which corresponded to a) values from 

closed form relations derived from a realistic model and b) 

YDOXHV�FORVH�WR�WKH�RVWHRQ¶V�VL]H��&RPSDULVRQV�are made with the 

corresponding computational results as well as with the 

classical elastic case. The agreement between the computational 

and the analytical results was perfect demonstrating the 

HIIHFWLYHQHVV�RI�0LQGOLQ¶V�)RUP�,,�JUDGLHQW� theory of elasticity 

to predict the dispersive nature of Rayleigh wave. This study 

could be regarded as a step towards the ultrasonic 

characterization of bone.  

I. INTRODUCTION 

Ultrasonic wave propagation in cortical bone has been 
widely investigated using the classical elastic theory [1]. 
However, in non-homogeneous materials with 
microstructural effects like bone the stress state should be 
determined non-locally, which cannot be achieved using 
classical elasticity. Furthermore above 0.8 MHz (i.e., 
wavelength smaller than the cortical thickness) ultrasound 
propagates in bone as a dispersive surface Rayleigh wave 
rather than a dispersive guided wave, which cannot be also 
supported by classical elasticity.  The dispersive nature of 
the guided and Rayleigh waves can be successfully described 
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using Mindlin¶V Form II gradient theory of elasticity, which 
introduces intrinsic parameters that correlate microstructure 
with macrostructure [2]. By exploiting the simplest form of 
this theory (which incorporates two coefficients) we recently 
showed that the dispersion of the propagating guided waves 
is highly DIIHFWHG�E\�ERQH¶V�PLFURVWUXFWXUH�>3]. This was also 
in accordance with a subsequent computational study on 
guided wave propagation in 2D Boundary Element bone 
models with microstructural effects [4].   

The dipolar gradient elastic theory has been used to 
explain Rayleigh wave dispersion phenomena that have been 
experimentally observed at high frequencies [5]. In two 
recent computational studies [6, 7] we also investigated the 
HIIHFW� RI� ERQH¶V� PLFURVWUXFWXUH� RQ� 5D\OHLJK� ZDYH�
propagation by adopting both the simple and the general 
Mindlin Form II gradient elastic theory (in which four 
constants are involved). Since the determination of the 
microstructural constants introduced in the stress analysis is 
an open issue when applying enhanced elastic theories to real 
problems, the constants were first assigned with values from 
closed form relations derived from a realistic model 
proposed by [4]. This model associates the internal length- 
scale values with the periodicity of geometrical and elastic 
properties of the osteons. Numerical simulations were also 
performed for different combinations between the internal 
constants with values at tKH�RUGHU�RI�WKH�RVWHRQ¶V�VL]H�>�]. By 
performing BEM simulations in cortical bone we confirmed 
that Rayleigh wave is dispersive only when the shear 
stiffness intrinsic parameter is different from the inertia one.  

In this work we analytically determine the dispersion 
curve of Rayleigh wave in the context of Mindlin Form II 
gradient elasticity. Analytical solution is given for an 
isotropic semi-infinite space with microstructure and 
mechanical properties equal to those of bone. The values of 
the internal length scale parameters were in accordance with 
those examined in [7]. Comparisons are made with the 
corresponding computational results derived from [7] as well 
as with the analytical dispersion curve of the Rayleigh wave 
in the classical elastic case and were also compared to 
empirically selected values. In all cases, the analysis of the 
obtained signals is performed in the time-frequency (t-f) 
domain.  

II. MATERIALS AND METHODS 

A. 0LQGOLQ¶V Form II gradient elastic theory and Rayleigh 

wave dispersion 

In 0LQGOLQ¶V�Form-II gradient elastic theory the potential 
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The t-f diagrams of the Rayleigh wave for Cases1, 2, 3 
and 4 are shown in Figs. 2, and Figs 3a, b and c respectively. 
The computational Rayleigh signal is depicted with the black 
line, whereas the corresponding analytical curves in the 
gradient and the classical elastic case are depicted with the 
blue dashed line and the magenta dotted line respectively.  

 

Figure 2.  T-f representation of Rayleigh wave dispersion for Case1 

( 4

1 2 1 1.04 10l l h m
�   u , 4

2 0.74 10h m
� u  ).  

In Case1, the computational Rayleigh dispersion can be 
perfectly characterized by the corresponding analytical curve 
calculated for the gradient elastic case (Fig.2). In Cases2 and 
3 the analytically derived arrival times of the Rayleigh wave 
in the gradient and classical elasticity are almost identical. 
Therefore slight differences (from the classical case) in the 
group velocity, mainly in Case3 (Fig.1), become rather 
practically insignificant in the t-f plane since the difference 
in the arrival time is very small. The computational Rayleigh 
wave is also well characterized by the analytical curves in 
both Cases2 and 3 in the 0-1.43MHz frequency range. In 
higher frequencies the computational t-f curve is slightly 
deviated from the theoretical ones. For instance at 
1.467MHz the difference between the computational and 
analytical arrival time is 1.51�sec in both Cases. Finally in 
Case4 the Rayleigh dispersion obtained from a BEM model 
can be perfectly described from the corresponding analytical 
gradient elastic t-f curve. 

IV. DISCUSSION 

In this study we analytically calculated for the first time 
the dispersion curve of the Rayleigh wave propagating in 
semi-infinite media with microstructure and properties equal 
to those of bone. Microstructural effects were accounted by 
XVLQJ� 0LQGOLQ¶V� )RUP� ,,� JUDGLHQW� HODVWLF� WKHRU\�� $OWKRXJK�
several enhanced theories have been proposed for the 
investigation of microstructural effects in bones [3], 
0LQGOLQ¶V� JUDGLHQW� HODVWLF� WKHRU\� KDV� EHFRPH� DWWUDFWLYH�
because of its simplicity and the symmetry of all stress 
tensors involved. 

Since no conclusion has been drawn regarding the values 
of the microstructural constants, we first determined them 
using closed form relations derived from a realistic model 
[4] with the representing volume element based on the 
RVWHRQ¶V� FKDUDFWHULVWLFV�� 7KUHH� DGGLWLRQDO� FRPELQDWLRQV 
between the microstructural parameters were also examined. 

In all cases the values were similar to those presented in our 
previous computational study [7] so as to perform direct 
comparisons between the analytical and computational 
results. 

 

Figure 3.  T-f representation of Rayleigh wave dispersion for (a) Case2, (b) 

Case3 and (c) Case4. 

In Case1 (i.e., 
1 2 1 2l l h h  z ) and Case4 (i.e., 

1 1 2 2l h h l  z ) the Rayleigh velocity was significantly 

modified from that in the classical elastic case as the 
frequency increases, exhibiting dispersion. In Case2 (i.e., 

1 1 2 2,l h l h  ) was almost identical to that in the classical 

case. In Case3 (i.e., 
1 2 2 1l l h h  z ) the velocity of the 

Rayleigh wave was anticipated non-dispersive but some 
slight dispersion is observed. However in the t-f plane (Fig. 
4) this could not be observed which suggests that Rayleigh 
wave arrives simultaneously without exhibiting dispersion.  

Our findings demonstrate that dispersion of Rayleigh 

waves occurs when 
2 2l hz  i.e., when microstructural effects 

are represented by different stiffness and inertia length scale 

parameters no matter which are the values of 
1 1,h l . This is in 

agreement with our previous findings in [7]. Nevertheless, in 
that study the computational results were validated by 
observing the asymptotic behavior the first order modes 
derived from the dipolar gradient elastic theory. To this end, 
the analytical Rayleigh curves for all cases were 
superimposed in the corresponding t-f diagrams of the 

signals from [7]. When 2 2l hz , the numerical simulations 

were in perfect agreement with the analytical solutions from 

gradient elasticity. When 
2 2l h ,a very small deviation was 

observed only at frequencies higher than 1.43MHz. 
However, these deviations could be possibly attributed to 
computational problems. 
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V. CONCLUSION 

We presented an analytical study on the effect of 

mictrostructure on Rayleigh wave propagation by using the 

Mindlin Form II gradient elastic theory. Calculations were 

performed for various combinations between the 

microstructural constants and the results were compared with 

the corresponding computational signals obtained from [7]. 

Overall our findings demonstrate the dispersive nature of the 

Rayleigh wave under certain conditions, i.e., only when the 

shear stiffness constant is different from the inertia internal 

one. (i.e. 
2 2l hz ). In addition the analytical results were in 

good agreement accordance with the computational ones. 

Overall 0LQGOLQ¶V� )RUP� ,,� gradient elastic theory is more 

efficient in predicting the dispersive nature of Rayleigh wave 

and thus it could be proved useful in providing more precise 

interpretations of clinical measurements in real bones. 
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